Of all the reasons for wanting to time-travelsaving someone from a fatal mistake, exploring ancient civilizations, gathering evidence about unsolved crimesrecovering lost information isnt the most exciting. But even if a quest to recover the file that didnt auto-save doesn't sound like a Hollywood movie plot, weve all had moments when weve longed to go back in time for exactly that reason.
Theories of time and time-travel have highlighted an apparent stumbling block: time travel requires changing the past, even simply by adding in the time traveller. The problem, according to chaos theory, is that the smallest of changes can cause radical consequences in the future. In this conception of time travel, it wouldnt be advisable to recover your unsaved document since this act would have huge knock-on effects on everything else.
New research in quantum physics from Los Alamos National Laboratory has shown that the so-called butterfly effect can be overcome in the quantum realm in order to unscramble lost information by essentially reversing time.
In a paper published in July, researchers Bin Yan and Nikolai Sinitsyn write that a thought experiment in unscrambling information with time-reversing operations would be expected to lead to the same butterfly effect as the one in the famous Ray Bradburys story A Sound of Thunder In that short story, a time traveler steps on an insect in the deep past and returns to find the modern world completely altered, giving rise to the idea we refer to as the butterfly effect.
In contrast," they wrote, "our result shows that by the end of a similar protocol the local information is essentially restored.
"The primary focus of this work is not 'time travel'physicists do not have an answer yet to tell whether it is possible and how to do time travel in the real world, Yan clarified.
[But] since our protocol involves a 'forward' and a 'backward' evolution of the qubits, achieved by changing the orders of quantum gates in the circuit, it has a nice interpretation in terms of Ray Bradbury's story for the butterfly effect. So, it is an accurate and useful way to understand our results."
What is the butterfly effect?
The world does not behave in a neat, ordered way. If it did, identical events would always produce the same patterns of knock-on effects, and the future would be entirely predictable, or deterministic. Chaos theory claims that the opposite: total randomness is not our situation either. We exist somewhere in the middle, in a world that often appears random but in fact obeys rules and patterns.
Patterns within chaos are hidden because they are highly sensitive to tiny changes, which means similar but not identical situations can produce wildly different outcomes. Another way of putting it is that in a chaotic world, effects can be totally out of proportion to their causes, like the metaphor of a flap of butterfly wings causing a tornado on the other side of the world. On the tornado side of the world, the storm would seem random, because the connection between the butterfly-flap and the tornado is too complex to be apparent. While this butterfly effect is the classic poetic metaphor illustrating chaos theory, chaotic dynamics also play out in real-world contexts, including population growth in the Canadian lynx species and the rotation of Plutos moons.
Another feature of chaos is that, even though the rules are deterministic, the future is not predictable in the long-term. Since chaos is so sensitive to small variations, there are near-infinite ways the rules could play out and we would need to know an impossible amount of detail about the present and past to map out exactly how the world will evolve.
Similarly, you cant reverse-engineer some piece of information about the past simply by knowing the current and even future situations; time-travel doesnt help retrieve past information, because even moving backwards in time, the chaotic system is still in play and will produce unpredictable effects.
Information scrambling
Unscrambling information which has previously been scrambled is not straightforward in a chaotic system. Yan and Sinitsyns key discovery is that it is nonetheless possible in quantum computing to get enough information via time-reversal which will then enable information unscrambling.
According to Yan, the fact that the butterfly effect does not occur in quantum realms is not a surprising result, but demonstrating information unscrambling is both novel and important.
In quantum information theory, scrambling occurs when the information encoded in each quantum particle is split up and redistributed across multiple quantum particles in the same quantum system. The scrambling is not random, since information redistribution relies on quantum entanglement, which means that the states of some quantum particles are dependent on each other. Although the scrambled result is seemingly chaotic, the information can be put back together, at least in principle, using the entangled relationships.
Importantly, information scrambling is not the same as information loss. To continue the earlier analogy: information loss occurs when a document is permanently deleted from your computer. For information scrambling, imagine cutting and pasting tiny bits of one computer file into every other file on your machine. Each file now contains a mess of information snippets. You could reconstruct the original files, if you remembered exactly which bits were cut and pasted, and did the entire process in reverse.
Physicists are interested in information scrambling for two main reasons. On the theoretical side, its been proposed as a way to explain what happens to information sucked into a black hole. On the more applied side, it could be an important mechanism for quantum computers to store and hide information, and could produce fast and efficient quantum simulators, which are used already to perform complex experiments including new drug discovery.
Yan and Sinitsyn fall into the second camp, and construct what they call a practically accessible scenario to test unscrambling by time-travel. This scenario is still hypothetical, but explores the mathematics of the actual quantum processor used by Google to demonstrate quantum supremacy in 2019.
Yan says: Another potential application is to use this effect to protect information. A random evolution on a quantum circuit can make the qubit robust to perturbations. One may further exploit the discovered effect to design protocols in quantum cryptography.
The set-up
In Yan and Sinitsyn's quantum thought experiment, Alice and Bob are the protagonists. Alice is using a simplified version of Googles quantum processor to hide just one part of the information stored on the computer (called the central qubit) by scrambling this qubits state across all the other qubits (called the qubit bath). Bob is cast as the intruder, much like a malicious computer hacker. He wants the important information originally stored on the central qubit, now distributed across entangled quantum particles in the bath.
Unfortunately, Bobs hack, while successful in getting the information he wanted, leaves a trail of destruction.
If her processor has already scrambled the information, Alice is sure that Bob cannot get anything useful, the authors write. However, Bobs measurement changes the state of the central qubit and also destroys all quantum correlations between this qubit and the rest of the system.
Bob's method of information theft has altered the computer state so that Alice can also no longer access the hidden information. In this case, the damage occurs because quantum states contain all possible values they could have, with assigned probabilities of each value, but these possibilities (represented by the wave function) collapse down to just one value when a measurement is taken. Quantum computing relies on unmeasured quantum systems to store even more information in multiple possible states, and Bobs intrusion has totally altered the computer system.
Reversing time
Theoretically, the behaviour of a quantum system moving backwards in time can be demonstrated mathematically using whats called a time-reversed evolution operator, which is exactly what Alice uses to de-scramble the information.
Her time-reversal is not actually time travel the way we understand it from science fiction, it is literally a reversal of times direction; the system evolves backwards following whatever dynamics are in play, rather than Alice herself revisiting an earlier time. If the butterfly effect held in the quantum world, then this backwards evolution would actually increase the damage Bob had caused, and Alice would only be able to retrieve the hidden information if she knew exactly what that damage was and could correct her calculations accordingly.
Luckily for Alice, quantum systems behave totally differently to non-quantum (classical or semiclassical) chaotic systems. What Yan and Sinitsyn found is that she can apply her time-reversal operation and end up at an "earlier" state which will not be identical with the initial system she set up, but it will also not have increased the damage which occurred later. Alice can then reconstruct her initial system using a method of quantum unscrambling called quantum state tomography.
What this means is that a quantum system can effectively heal and even recover information that was scrambled in the past, without the chaos of the butterfly effect.
Classical chaotic evolution magnifies any state damage exponentially quickly, which is known as the butterfly effect, explain Yan and Sinitsyn. The quantum evolution, however, is
linear. This explains why, in our case, the uncontrolled damage to the state is not magnified by the subsequent complex evolution. Moreover, the fact that Bobs measurement does not damage the useful information follows from the property of entanglement correlations in the scrambled state.
Hypothetical though this scenario may be, the result already has a practical use: verifying whether a quantum system has achieved quantum supremacy. Quantum processors can simulate time-reversal in a way that classical computers cannot, which could provide the next important test for the quantum race between Google and IBM.
So, while time travel is still not in the cards, the quantum world continues to mess with our classical conception of how the world evolves in time, and pushes the limits of computing information.
See the original post here:
Scientists Have Shown There's No 'Butterfly Effect' in the Quantum World - VICE
- If Wormholes Are Lurking in Our Universe, This Is How We Could Find Them - ScienceAlert - January 17th, 2021
- New quantum particle may have been accidentally discovered - New Atlas - January 13th, 2021
- Exploring the unanswered questions of our universe with quantum technologies - University of Birmingham - January 13th, 2021
- Wormholes may be lurking in the universe and new studies are proposing ways of finding them - The Conversation UK - January 13th, 2021
- Surprising Discovery of Unexpected Quantum Behavior in Insulators Suggests Existence of Entirely New Type of Particle - SciTechDaily - January 13th, 2021
- New quantum technology projects to solve mysteries of the universe - Open Access Government - January 13th, 2021
- University of Sheffield to lead multi-million pound project which could open up a new frontier in physics - University of Sheffield News - January 13th, 2021
- The Greatest: Four Legends Gather in One Night in Miami - Memphis Flyer - January 13th, 2021
- Raytheon UK part of team transforming the Royal Navy's technology, training and learning solutions - PRNewswire - January 13th, 2021
- Optical selection and sorting of nanoparticles according to quantum mechanical properties - Science Advances - January 13th, 2021
- Birds Have a Mysterious 'Quantum Sense'. For The First Time, Scientists Saw It in Action - ScienceAlert - January 9th, 2021
- The unhackable computers that could revolutionize the future - CNN - January 9th, 2021
- How understanding light has led to a hundred years of bright ideas - The Economist - January 9th, 2021
- Quantum Nanodevice Can Be Both a Heat Engine and Refrigerator at the Same Time - SciTechDaily - January 9th, 2021
- Illumination at the limits of knowledge - The Economist - January 9th, 2021
- Detective Work in Theoretical Physics: Comprehensive Review of Physics of Interacting Particles - SciTechDaily - January 5th, 2021
- The 10 biggest physics stories of 2020 - Livescience.com - January 5th, 2021
- The Schrodinger Equation appears in Criminal Minds - Looper - January 5th, 2021
- Op-Ed: The universe is just a thought, says new theory Or maybe not - Digital Journal - December 26th, 2020
- Here's Why Quantum Computing Will Not Break Cryptocurrencies - Forbes - December 26th, 2020
- Quantum Superposition Evidenced by Measuring Interaction of Light with Vibration - AZoQuantum - December 26th, 2020
- A state of vibration that exists simultaneously at two different times - Tech Explorist - December 26th, 2020
- The Secret Science of Santa - ZME Science - December 26th, 2020
- Matter Deconstructed: The Observer Effect and Photography - PetaPixel - December 26th, 2020
- MIT's quantum entangled atomic clock could still be ticking after billions of years - SYFY WIRE - December 26th, 2020
- If the multiverse exists, are there infinite copies of me? - New Scientist - December 12th, 2020
- What We Are Reading Today: Understanding Quantum Mechanics by Roland Omnes - Arab News - December 12th, 2020
- The Upcoming Women In Quantum Summit III And Its Secret 70 Year-Old Legacy - Forbes - December 12th, 2020
- International Relations goes quantum - News - The University of Sydney - December 12th, 2020
- Scientists just engineered the perfect friction-less fluid and here's what it sounds like! - SYFY WIRE - December 12th, 2020
- MIT Physicists Created a Perfect Fluid and Captured the Sound Listen Here - SciTechDaily - December 12th, 2020
- How Could Quantum Sensing Transform Industries and our Society? - AZoSensors - December 12th, 2020
- The Unbroken Story Birth of the Universe to the Big Bang & Beyond - The Daily Galaxy --Great Discoveries Channel - December 12th, 2020
- Combining Quantum Physics and the Theory of Relativity: Sound-Waves From a Quantum Vacuum at the Black Hole Laboratory - SciTechDaily - November 29th, 2020
- Direct Visualization of Quantum Dots Reveals Shape of Quantum Wave Function of the Trapped Electrons - SciTechDaily - November 29th, 2020
- Quantum Mechanics and the Upholding Power of God - National Catholic Register - November 29th, 2020
- Physicists introduced the notion of the quantum magic square - Tech Explorist - November 29th, 2020
- This physicist keeps the science in Marvel's movies accurate (ish) - Wired.co.uk - November 29th, 2020
- Quantum Time Twist Offers a Way to Create Schrdinger's Clock - Scientific American - October 25th, 2020
- Quantum Tunnels Show How Particles Can Break the Speed of Light - Quanta Magazine - October 25th, 2020
- The Importance of Funding Quantum Physics, Even in a Pandemic - Inside Philanthropy - October 25th, 2020
- Quantum Physics and Early Death | Dan Peterson - Patheos - October 25th, 2020
- A New Timekeeping Theory Reconciles Einstein's Relativity and Quantum Clocks - Science Times - October 25th, 2020
- Archer Materials well-aligned with strategic direction of the US in quantum computing - Proactive Investors Australia - October 25th, 2020
- Could Schrdingers cat exist in real life? We propose an experiment to find out - Scroll.in - October 25th, 2020
- Every Thing You Need to Know About Quantum Computers - Analytics Insight - October 25th, 2020
- Physicists clock the fastest possible speed of sound - Live Science - October 25th, 2020
- Post-doctoral Fellow, Department of Physics job with THE UNIVERSITY OF HONG KONG | 230760 - Times Higher Education (THE) - October 25th, 2020
- Diamonds Are a Quantum Scientist's Best Friend: Discovery May Revolutionize the High-Tech Industry - SciTechDaily - October 25th, 2020
- Sumit Das to Deliver 2019-20 A&S Distinguished Professor Lecture on 'Deconstructing Space-Time' - UKNow - October 25th, 2020
- Column: A new era of electric vehicles could be on the way - Gainesville Times - October 25th, 2020
- The TRP turf - The Times of India Blog - October 25th, 2020
- Beyond Homo Sapiens A Slightly Different Roll of the Darwinian Dice (Weekend Feature) - The Daily Galaxy --Great Discoveries Channel - October 25th, 2020
- Quantum and classical computers handle time differently. What does that mean for AI? - The Next Web - September 18th, 2020
- The Fate of Schrdinger's Cat Probably Isn't in The Hands of Gravity, Experiment Finds - ScienceAlert - September 18th, 2020
- Hybrid lightmatter particles offer tantalising new way to control chemistry - Chemistry World - September 18th, 2020
- How Physics Erases The Beginning Of The Universe - Forbes - August 19th, 2020
- Does the Butterfly Effect Exist? Maybe, But Not in the Quantum Realm - Discover Magazine - August 19th, 2020
- Dismantling disciplinary boundaries and decolonizing young India: Decoding the National Educational Policy (20 - The Times of India Blog - August 19th, 2020
- The spread of 'stranger than we can think' - Yahoo Lifestyle - August 19th, 2020
- Raytheon Technologies invests in new transformational STEM high school - PRNewswire - August 19th, 2020
- The Wheel of Time and the Storytelling Problem in the Concept of a Binary - tor.com - August 19th, 2020
- Physicists witness time crystals interacting for the first time ever - New Atlas - August 19th, 2020
- Quantum mechanics is immune to the butterfly effect - The Economist - August 17th, 2020
- Major quantum computational breakthrough is shaking up physics and maths - The Conversation UK - August 17th, 2020
- Physicists watch quantum particles tunnel through solid barriers. Here's what they found. - Space.com - August 17th, 2020
- The science of marketing: taking inspiration from quantum physics - The Drum - August 17th, 2020
- Here's why we need to build a quantum security coalition - World Economic Forum - August 17th, 2020
- The Spread of 'Stranger Than We Can Think' - SFGate - August 17th, 2020
- Nuh Gedik and Pablo Jarillo-Herrero are 2020 Moore Experimental Investigators in Quantum Materials - MIT News - August 17th, 2020
- Students in the news | Announcements - Indiana Gazette - August 17th, 2020
- Indian American Engineer Develops Parachute That Helped Curiosity Land on Mars - India West - August 17th, 2020
- How Quantum Mechanics will Change the Tech Industry - Unite.AI - July 21st, 2020
- Money & Markets: After the virus, make sure you've read the inflationary playbook - E&T Magazine - July 21st, 2020
- Bruce Lee: Inside the mind of the martial arts icon - CNN - July 21st, 2020
- Read Before Pontificating on Quantum Technology - War on the Rocks - July 13th, 2020
- The universe's clock might have bigger ticks than we imagine - Livescience.com - July 13th, 2020
- Testing Einstein's theory of relativity | OUPblog - OUPblog - July 13th, 2020
- Scientists Say This Is the Smallest Unit of Time That Could Exist - lintelligencer - July 13th, 2020
- Study: The Period of the Universe's Clock - lintelligencer - July 13th, 2020