Richard Feynman once said, If you think you understand quantum mechanics, then you dont understand quantum mechanics. While that may be true, it certainly doesnt mean we cant try. After all, where would we be without our innate curiosity?
To understand the power of the unknown, were going to untangle the key concepts behind quantum physics two of them, to be exact (phew!). Its all rather abstract, really, but thats good news for us, because you dont need to be a Nobel-winning theoretical physicist to understand whats going on. And whats going on? Well, lets find out.
Well start with a brief thought experiment. Austrian physicist Erwin Schrdinger wants you to imagine a cat in a sealed box. So far, so good. Now imagine a vial containing a deadly substance is placed inside the box. What happened to the cat? We cannot know to a certainty. Thus, until the situation is observed, i.e. we open the box, the cat is both dead and alive, or in more scientific terms, it is in a superposition of states. This famous thought experiment is known as the Schrdingers cat paradox, and it perfectly explains one of the two main phenomena of quantum mechanics.
Superposition dictates that, much like our beloved cat, a particle exists in all possible states up until the moment it is measured. Observing the particle immediately destroys its quantum properties, and voil, it is once again governed by the rules of classical mechanics.
Now, things are about to get more tricky, but dont be deterred even Einstein was thrown-back by the idea. Described by the man himself as spooky action at a distance, entanglement is a connection between a pair of particles a physical interaction that results in their shared state (or lack thereof, if we go by superposition).
Entanglement dictates that a change in the state of one entangled particle triggers an immediate, predictable response from the remaining particle. To put things into perspective, lets throw two entangled coins into the air. Subsequently, lets observe the result. Did the first coin land on heads? Then the measurement of the remaining coin must be tales. In other words, when observed, entangled particles counter each others measurements. No need to be afraid, though entanglement is not that common. Not yet, that is.
Whats the point of all this knowledge if I cant use it?, you may be asking. Whatever your question, chances are a quantum computer has the answer. In a digital computer, the system requires bits to increase its processing power. Thus, in order to double the processing power, you would simply double the amount of bits this is not at all similar in quantum computers.
A quantum computer uses qubits, the basic unit of quantum information, to provide processing capabilities unmatched even by the worlds most powerful supercomputers. How? Superposed qubits can simultaneously tackle a number of potential outcomes (or states, to be more consistent with our previous segments). In comparison, a digital computer can only crunch through one calculation at a time. Furthermore, through entanglement, we are able to exponentially amplify the power of a quantum computer, particularly when comparing this to the efficiency of traditional bits in a digital machine. To visualise the scale, consider the sheer amount of processing power each qubit provides, and now double it.
But theres a catch even the slightest vibrations and temperature changes, referred to by scientists as noise, can cause quantum properties to decay and eventually, disappear altogether. While you cant observe this in real time, what you will experience is a computational error. The decay of quantum properties is known as decoherence, and it is one of the biggest setbacks when it comes to technology relying on quantum mechanics.
In an ideal scenario, a quantum processor is completely isolated from its surroundings. To do so, scientists use specialised fridges, known as cryogenic refrigerators. These cryogenic refrigerators are colder than interstellar space, and they enable our quantum processor to conduct electricity with virtually no resistance. This is known as a superconducting state, and it makes quantum computers extremely efficient. As a result, our quantum processor requires a fraction of the energy a digital processor would use, generating exponentially more power and substantially less heat in the process. In an ideal scenario, that is.
Weather forecasting, financial and molecular modelling, particle physics the application possibilities for quantum computation are both enormous and prosperous.
Still, one of the most tantalising prospects is perhaps that of quantum artificial intelligence. This is because quantum systems excel at calculating probabilities for many possible choices their ability to provide continuous feedback to intelligent software is unparalleled in todays market. The estimated impact is immeasurable, spanning across fields and industries from AI in the automotive all the way to medical research. Lockheed Martin, American aerospace giant, was quick to realise the benefits, and is already leading by example with its quantum computer, using it for autopilot software testing. Take notes.
The principles of quantum mechanics are also used to address issues in cybersecurity. RSA (Rivest-Shamir-Adleman) cryptography, one of the worlds go-to methods of data encryption, relies on the difficulty of factoring (very) large prime numbers. While this may work with traditional computers, which arent particularly effective at solving multi-factor problems, quantum computers will easily crack these encryptions thanks to their unique ability to calculate numerous outcomes simultaneously.
Theoretically, Quantum key distribution takes care of this with a superposition-based encryption system. Imagine youre trying to relay sensitive information to a friend. To do so, you create an encryption key using qubits, which are then sent to the recipient over an optical cable. Had the encoded qubits been observed by a third party, both you and your friend will have been notified by an unexpected error in the operation. However, to maximise the benefits of QKD, the encryption keys would have to maintain their quantum properties at all times. Easier said than done.
It doesnt stop there. The brightest minds around the globe are constantly trying to utilise entanglement as a mode of quantum communication. So far, Chinese researchers were able to successfully beam entangled pairs of photons through their Micius satellite over a record-holding 745 miles. Thats the good news. The bad news is that, out of the 6 million entangled photons beamed each second, only one pair survived the journey (thanks, decoherence). An incredible feat nonetheless, this experiment outlines the kind of infrastructure we may use in the future to secure quantum networks.
The quantum race also saw a recent breakthrough advancement from QuTech, a research centre at TU Delft in the Netherlands their quantum system operates at a temperature over one degree warmer than absolute zero (-273 degrees Celsius).
While these achievements may seem insignificant to you and I, the truth is that, try after try, such groundbreaking research is bringing us a step closer to the tech of tomorrow. One thing remains unchanged, however, and that is the glaring reality that those who manage to successfully harness the power of quantum mechanics will have supremacy over the rest of the world. How do you think they will use it?
Read the original here:
How Quantum Mechanics will Change the Tech Industry - Unite.AI
- Everything you need to know about quantum physics (almost ... - February 22nd, 2021
- Quantum mechanics - Wikipedia - February 22nd, 2021
- Six Things Everyone Should Know About Quantum Physics - February 22nd, 2021
- A new Approach Could Tease out the Connection Between Gravity and Quantum Mechanics - Universe Today - February 22nd, 2021
- And So It Begins Quantum Physicists Create a New Universe With Its Own Rules - The Daily Galaxy --Great Discoveries Channel - February 22nd, 2021
- IBM adds 10 historically Black colleges and universities to quantum computing center - TechRepublic - February 22nd, 2021
- Physicists Need to Be More Careful with How They Name Things - Scientific American - February 22nd, 2021
- Can the laws of physics disprove God? - The Conversation UK - February 22nd, 2021
- Planet Earth Report The Quantum Century to Events That Could Have Ended Humanity - The Daily Galaxy --Great Discoveries Channel - February 22nd, 2021
- A New Measurement of Quantum Space-Time Has Found Nothing Going On - ScienceAlert - February 22nd, 2021
- With a $50,000 Grant, Black Quantum Futurism Will Continue to Disrupt Space and Time - GalleristNY - February 22nd, 2021
- Gravity May Play a Tiny But Important Role in The Microworld of Particle Physics - ScienceAlert - February 22nd, 2021
- IBM Adds Future Developer And Software Details To Its Quantum Roadmap - Forbes - February 22nd, 2021
- Physics - A Superconducting Qubit that Protects Itself - Physics - February 22nd, 2021
- Black Quantum Futurism receives the Knight Foundations new art and technology fellowship - WHYY - February 22nd, 2021
- What science tells us about the quantum origin of the universe - Sunday Vision - February 22nd, 2021
- Quantum Mechanics, Free Will and the Game of Life - Scientific American - February 14th, 2021
- Quantum Theory Proposes That Cause and Effect Can Go In Loops - Universe Today - February 14th, 2021
- The search for dark matter gets a speed boost from quantum technology - The Conversation US - February 14th, 2021
- Microsofts Big Win in Quantum Computing Was an Error After All - WIRED - February 14th, 2021
- Kangaroo Court: Quantum Computing Thinking on the Future - JD Supra - February 14th, 2021
- New EU Consortium shaping the future of Quantum Computing USA - PRNewswire - February 14th, 2021
- 2020 Quantum Communications in Space Research Report: Quantum Communications are Expected to Solve the Problem of Secure communications First on... - February 14th, 2021
- Mutually unbiased bases and symmetric informationally complete measurements in Bell experiments - Science Advances - February 14th, 2021
- Yale Quantum Institute Co-sponsored Event - Alternative Realities for the Living - Quantum Physics & Fiction - Yale News - February 14th, 2021
- Dont Tell Einstein, but Black Holes Might Have Hair - WIRED - February 14th, 2021
- A Magnetic Twist to Graphene Could Offer a Dramatic Increase in Processing Speeds Compared to Electronics - SciTechDaily - February 14th, 2021
- The Interplay between Quantum Theory And Artificial Intelligence - Analytics India Magazine - February 14th, 2021
- In Violation of Einstein, Black Holes Might Have 'Hair' - Quanta Magazine - February 14th, 2021
- Dr. William Audeh - The Gazette - February 10th, 2021
- Quantum Physics | Rakuten Viki - February 6th, 2021
- Switching Nanolight On and Off | Columbia News - Columbia University - February 6th, 2021
- Scientists narrow down the 'weight' of dark matter trillions of trillions of times - Livescience.com - February 6th, 2021
- The Super Bowl: What is time? - SB Nation - February 6th, 2021
- 'Friends' Star Matthew Perry Dated Julia Roberts By Wooing Her With Quantum Physics and Funny Jokes - Showbiz Cheat Sheet - February 6th, 2021
- A world-first method to enable quantum optical circuits that use photons - Tech Explorist - February 6th, 2021
- Quantum Physics Story Helgoland to Be Adapted by Fremantles The Apartment, CAM Film (EXCLUSIVE) - Variety - February 2nd, 2021
- Quantum physics and romance collide in the streaming production of Constellations - Chicago Reader - February 2nd, 2021
- 'A Glitch in the Matrix' Director Was Skeptical About Simulation Theory Until He Started Doing Research - IndieWire - February 2nd, 2021
- Record-Breaking Source for Single Photons Developed That Can Produce Billions of Quantum Particles per Second - SciTechDaily - February 2nd, 2021
- Can public clouds fix the developer experience in the HPC domain? - Forbes - February 2nd, 2021
- 29 Scientists Came Together in the "Most Intelligent Photo" Ever Taken - My Modern Met - February 2nd, 2021
- Silence your stoner friends with this video of a room entirely constructed out of mirrors - The A.V. Club - February 2nd, 2021
- Valuable contributor to society - The Tribune India - February 2nd, 2021
- Copperizing the Complexity of Superconductivity - Newswise - February 2nd, 2021
- A Zoom with a view: Wintersession offers a virtual journey from the kitchen to Hollywood - Princeton University - February 2nd, 2021
- IBMs top executive says, quantum computers will never reign supreme over classical ones - The Hindu - January 29th, 2021
- How quantum is it? U of T physicist Aaron Goldberg may have the answer - News@UofT - January 29th, 2021
- Wormholes May Be Lurking in the Universe Here Are Proposed Ways of Finding Them - SciTechDaily - January 29th, 2021
- The Convergence of Internet of Things and Quantum Computing - BBN Times - January 29th, 2021
- Who You Really Are And Why It Matters | Practical Ethics - Practical Ethics - January 29th, 2021
- The relativity principle of physics in technology - The National - January 29th, 2021
- If Wormholes Are Lurking in Our Universe, This Is How We Could Find Them - ScienceAlert - January 17th, 2021
- New quantum particle may have been accidentally discovered - New Atlas - January 13th, 2021
- Exploring the unanswered questions of our universe with quantum technologies - University of Birmingham - January 13th, 2021
- Wormholes may be lurking in the universe and new studies are proposing ways of finding them - The Conversation UK - January 13th, 2021
- Surprising Discovery of Unexpected Quantum Behavior in Insulators Suggests Existence of Entirely New Type of Particle - SciTechDaily - January 13th, 2021
- New quantum technology projects to solve mysteries of the universe - Open Access Government - January 13th, 2021
- University of Sheffield to lead multi-million pound project which could open up a new frontier in physics - University of Sheffield News - January 13th, 2021
- The Greatest: Four Legends Gather in One Night in Miami - Memphis Flyer - January 13th, 2021
- Raytheon UK part of team transforming the Royal Navy's technology, training and learning solutions - PRNewswire - January 13th, 2021
- Optical selection and sorting of nanoparticles according to quantum mechanical properties - Science Advances - January 13th, 2021
- Birds Have a Mysterious 'Quantum Sense'. For The First Time, Scientists Saw It in Action - ScienceAlert - January 9th, 2021
- The unhackable computers that could revolutionize the future - CNN - January 9th, 2021
- How understanding light has led to a hundred years of bright ideas - The Economist - January 9th, 2021
- Quantum Nanodevice Can Be Both a Heat Engine and Refrigerator at the Same Time - SciTechDaily - January 9th, 2021
- Illumination at the limits of knowledge - The Economist - January 9th, 2021
- Detective Work in Theoretical Physics: Comprehensive Review of Physics of Interacting Particles - SciTechDaily - January 5th, 2021
- The 10 biggest physics stories of 2020 - Livescience.com - January 5th, 2021
- The Schrodinger Equation appears in Criminal Minds - Looper - January 5th, 2021
- Op-Ed: The universe is just a thought, says new theory Or maybe not - Digital Journal - December 26th, 2020
- Here's Why Quantum Computing Will Not Break Cryptocurrencies - Forbes - December 26th, 2020
- Quantum Superposition Evidenced by Measuring Interaction of Light with Vibration - AZoQuantum - December 26th, 2020
- A state of vibration that exists simultaneously at two different times - Tech Explorist - December 26th, 2020
- The Secret Science of Santa - ZME Science - December 26th, 2020
- Matter Deconstructed: The Observer Effect and Photography - PetaPixel - December 26th, 2020
- MIT's quantum entangled atomic clock could still be ticking after billions of years - SYFY WIRE - December 26th, 2020
- If the multiverse exists, are there infinite copies of me? - New Scientist - December 12th, 2020
- What We Are Reading Today: Understanding Quantum Mechanics by Roland Omnes - Arab News - December 12th, 2020
- The Upcoming Women In Quantum Summit III And Its Secret 70 Year-Old Legacy - Forbes - December 12th, 2020