How do protons fuse to power the sun? What happens to neutrinos inside a collapsing star after a supernova? How did atomic nuclei form from protons and neutrons in the first few minutes after the Big Bang?
Simulating these mysterious processes requires some extremely complex calculations, sophisticated algorithms, and a vast amount of supercomputing power.
Theoretical physicist William Detmold marshals these tools to look into the quantum realm. Improved calculations of these processes enable us to learn about fundamental properties of the universe, he says. Of the visible universe, most mass is made of protons. Understanding the structure of the proton and its properties seems pretty important to me.
Researchers at the Large Hadron Collider (LHC), the worlds largest particle accelerator, investigate those properties by smashing particles together and poring over the subatomic wreckage for clues to what makes up and binds together matter.
Detmold, an associate professor in the Department of Physics and a member of the Center for Theoretical Physics and the Laboratory for Nuclear Science, starts instead from first principles namely, the theory of the Standard Model of particle physics.
The Standard Model describes three of the four fundamental forces of particle physics (with the exception of gravity) and all of the known subatomic particles.
The theory has succeeded in predicting the results of experiments time and time again, including, perhaps most famously, the 2011 confirmation by LHC researchers of the existence of the Higgs boson.
A core focus of Detmolds research is on confronting experimental data from experiments such as the LHC. After devising calculations, running them on multiple supercomputers, and sifting through the enormous quantity of statistics they crank out a process that can take from six months to several years Detmold and his team then take all that data and do a lot of analysis to extract key physics quantities for example, the mass of the proton, as a numerical value with an uncertainty range.
My driving concern in this regard is how will this analysis impact experimental results, Detmold says. In some cases, we do these calculations in order to interpret experiments done at the LHC, and ask: Is the Standard Model describing whats going on there?
Detmold has made important advances in solving the complex equations of quantum chromodynamics (QCD), a quantum field theory that describes the strong interactions inside of a proton, between quarks (the smallest known constituent of matter) and gluons (the forces that bind them together).
He has performed some of the first QCD calculations of certain particle decays reactions. They have, for the most part, aligned very closely with results from the LHC.
There are no really stark discrepancies between the Standard Model and LHC results, but there are some interesting tensions, he says. My work has been looking at some of those tensions.
Inspired to ask questions
Detmolds interest in quantum physics dates to his schoolboy days, growing up in Adelaide, Australia. I remember reading a bunch of popular science books as a young kid, he recalls, and being very intrigued about quarks, gluons, and other fundamental particles, and wanting to get into the mathematical tools to work with them.
He would go on to earn both his bachelors degree and PhD from the University of Adelaide. As an undergraduate studying mathematics, he encountered a professor who opened his eyes to the mysteries of quantum mechanics. It was probably the most exciting class Ive had. And I get to teach that now.
Hes been teaching that introductory course on quantum mechanics at MIT for a few years now, and he has become adept at spotting those students who are similarly seized by the subject. In every class there are students you can see the enthusiasm dripping off the page as they write their problem sets. Its exciting to interact with them.
While he cant always bring the full complexity of his research into those conversations, he tries to infuse them with the spirit of his enterprise: how to ask the questions that might yield new insights into the deep structures of the universe.
You can frame things in ways to inspire students to go into research and push themselves to learn more, he says. A lot of teaching is about motivating students to go and find out more themselves, not just information transmission. And hopefully I inspire my students the way my professor inspired me.
He adds: With all of us stuck at home or in remote locations, Im not sure that anyone is feeling particularly inspired right now, but this pandemic will eventually end, and sometimes getting lost in the intricacies of Maxwells equations gives a nice break from what is going on in the world.
Enhancing experiments
When he isnt teaching or analyzing supercomputer data, Detmold is often helping to plan better experiments.
The Electron-Ion Collider, a facility planned for construction over the next decade at Brookhaven National Lab on Long Island, aims to advance understanding of the internal structure of the proton. Some of Detmolds calculations are aimed at providing a qualitative picture of the structure of gluons inside the proton, to help the projects designers know what to look for, in terms of orders of magnitude for detecting certain quantities.
We can make predictions for what well be seeing if you design it in a certain way, he says.
Detmold has also become something of an expert at orchestrating complex supercomputing projects. That entails figuring out how to run a huge number of calculations in an efficient way, given the limited availability of supercomputing power and time.
He and his lab members have developed algorithms and software infrastructure to run these calculations on massive supercomputers, some of which have different types of processing units that make data management complicated. Its a research project in its own right, how to perform those calculations in a way thats efficient.
Indeed, Detmold spends time working on how improve methods for getting to the answer. New algorithms, he says, are a key to advancing computation to tackle new problems, calculating nuclear structures and reactions in the context of the Standard Model.
Lets say theres a quantity we want to compute, but with the tools we have at the moment it takes 10,000 years of running a massive supercomputer, he says. Coming up with a new way to calculate something that actually makes it possible to do thats exciting.
Inspiring interest in the unknown
But fundamental mysteries are still at the center of Detmolds work. As quarks and gluons get farther apart from each other, the strength of their interactions increases. To understand whats happening in these low-energy states, he has advanced the use of a computational technique known as lattice quantum chromodynamics (LQCD), which places the quantum fields of the quarks and gluons on a discretized grid of points to represent space-time.
In 2017, Detmold and colleagues made the first-ever LQCD calculations of the rate of proton-proton fusion the process by which two protons fuse together to form a deuteron.
This process kicks off the nuclear reactions that power the sun. Its also exceedingly difficult to study through experiments. If you try to smash together two protons, their electric charges mean they dont want to be near each other, says Detmold.
It shows where this field can go, he says of his teams breakthrough. Its one of the simplest nuclear reactions, but it opens the doorway to saying we can address these directly from the Standard Model. Were trying to build upon this work and calculate related reactions.
Another recent project involved using LQCD to study the formation of nuclei in the universe its earliest moments. As well as looking at these processes for the actual universe, hes performed computations that change certain parameters the masses of quarks and how strongly they interact in order to predict how the reactions of Big Bang nucleosynthesis might have happened and how much they might have affected the evolution of the universe.
These calculations can tell you how likely it is to end up producing universes like the one we see, Detmold says.
Go here to see the original:
Exploring the quantum field, from the sun's core to the Big Bang - MIT News
- If Wormholes Are Lurking in Our Universe, This Is How We Could Find Them - ScienceAlert - January 17th, 2021
- New quantum particle may have been accidentally discovered - New Atlas - January 13th, 2021
- Exploring the unanswered questions of our universe with quantum technologies - University of Birmingham - January 13th, 2021
- Wormholes may be lurking in the universe and new studies are proposing ways of finding them - The Conversation UK - January 13th, 2021
- Surprising Discovery of Unexpected Quantum Behavior in Insulators Suggests Existence of Entirely New Type of Particle - SciTechDaily - January 13th, 2021
- New quantum technology projects to solve mysteries of the universe - Open Access Government - January 13th, 2021
- University of Sheffield to lead multi-million pound project which could open up a new frontier in physics - University of Sheffield News - January 13th, 2021
- The Greatest: Four Legends Gather in One Night in Miami - Memphis Flyer - January 13th, 2021
- Raytheon UK part of team transforming the Royal Navy's technology, training and learning solutions - PRNewswire - January 13th, 2021
- Optical selection and sorting of nanoparticles according to quantum mechanical properties - Science Advances - January 13th, 2021
- Birds Have a Mysterious 'Quantum Sense'. For The First Time, Scientists Saw It in Action - ScienceAlert - January 9th, 2021
- The unhackable computers that could revolutionize the future - CNN - January 9th, 2021
- How understanding light has led to a hundred years of bright ideas - The Economist - January 9th, 2021
- Quantum Nanodevice Can Be Both a Heat Engine and Refrigerator at the Same Time - SciTechDaily - January 9th, 2021
- Illumination at the limits of knowledge - The Economist - January 9th, 2021
- Detective Work in Theoretical Physics: Comprehensive Review of Physics of Interacting Particles - SciTechDaily - January 5th, 2021
- The 10 biggest physics stories of 2020 - Livescience.com - January 5th, 2021
- The Schrodinger Equation appears in Criminal Minds - Looper - January 5th, 2021
- Op-Ed: The universe is just a thought, says new theory Or maybe not - Digital Journal - December 26th, 2020
- Here's Why Quantum Computing Will Not Break Cryptocurrencies - Forbes - December 26th, 2020
- Quantum Superposition Evidenced by Measuring Interaction of Light with Vibration - AZoQuantum - December 26th, 2020
- A state of vibration that exists simultaneously at two different times - Tech Explorist - December 26th, 2020
- The Secret Science of Santa - ZME Science - December 26th, 2020
- Matter Deconstructed: The Observer Effect and Photography - PetaPixel - December 26th, 2020
- MIT's quantum entangled atomic clock could still be ticking after billions of years - SYFY WIRE - December 26th, 2020
- If the multiverse exists, are there infinite copies of me? - New Scientist - December 12th, 2020
- What We Are Reading Today: Understanding Quantum Mechanics by Roland Omnes - Arab News - December 12th, 2020
- The Upcoming Women In Quantum Summit III And Its Secret 70 Year-Old Legacy - Forbes - December 12th, 2020
- International Relations goes quantum - News - The University of Sydney - December 12th, 2020
- Scientists just engineered the perfect friction-less fluid and here's what it sounds like! - SYFY WIRE - December 12th, 2020
- MIT Physicists Created a Perfect Fluid and Captured the Sound Listen Here - SciTechDaily - December 12th, 2020
- How Could Quantum Sensing Transform Industries and our Society? - AZoSensors - December 12th, 2020
- The Unbroken Story Birth of the Universe to the Big Bang & Beyond - The Daily Galaxy --Great Discoveries Channel - December 12th, 2020
- Combining Quantum Physics and the Theory of Relativity: Sound-Waves From a Quantum Vacuum at the Black Hole Laboratory - SciTechDaily - November 29th, 2020
- Direct Visualization of Quantum Dots Reveals Shape of Quantum Wave Function of the Trapped Electrons - SciTechDaily - November 29th, 2020
- Quantum Mechanics and the Upholding Power of God - National Catholic Register - November 29th, 2020
- Physicists introduced the notion of the quantum magic square - Tech Explorist - November 29th, 2020
- This physicist keeps the science in Marvel's movies accurate (ish) - Wired.co.uk - November 29th, 2020
- Quantum Time Twist Offers a Way to Create Schrdinger's Clock - Scientific American - October 25th, 2020
- Quantum Tunnels Show How Particles Can Break the Speed of Light - Quanta Magazine - October 25th, 2020
- The Importance of Funding Quantum Physics, Even in a Pandemic - Inside Philanthropy - October 25th, 2020
- Quantum Physics and Early Death | Dan Peterson - Patheos - October 25th, 2020
- A New Timekeeping Theory Reconciles Einstein's Relativity and Quantum Clocks - Science Times - October 25th, 2020
- Archer Materials well-aligned with strategic direction of the US in quantum computing - Proactive Investors Australia - October 25th, 2020
- Could Schrdingers cat exist in real life? We propose an experiment to find out - Scroll.in - October 25th, 2020
- Every Thing You Need to Know About Quantum Computers - Analytics Insight - October 25th, 2020
- Physicists clock the fastest possible speed of sound - Live Science - October 25th, 2020
- Post-doctoral Fellow, Department of Physics job with THE UNIVERSITY OF HONG KONG | 230760 - Times Higher Education (THE) - October 25th, 2020
- Diamonds Are a Quantum Scientist's Best Friend: Discovery May Revolutionize the High-Tech Industry - SciTechDaily - October 25th, 2020
- Sumit Das to Deliver 2019-20 A&S Distinguished Professor Lecture on 'Deconstructing Space-Time' - UKNow - October 25th, 2020
- Column: A new era of electric vehicles could be on the way - Gainesville Times - October 25th, 2020
- The TRP turf - The Times of India Blog - October 25th, 2020
- Beyond Homo Sapiens A Slightly Different Roll of the Darwinian Dice (Weekend Feature) - The Daily Galaxy --Great Discoveries Channel - October 25th, 2020
- Quantum and classical computers handle time differently. What does that mean for AI? - The Next Web - September 18th, 2020
- The Fate of Schrdinger's Cat Probably Isn't in The Hands of Gravity, Experiment Finds - ScienceAlert - September 18th, 2020
- Hybrid lightmatter particles offer tantalising new way to control chemistry - Chemistry World - September 18th, 2020
- Scientists Have Shown There's No 'Butterfly Effect' in the Quantum World - VICE - August 19th, 2020
- How Physics Erases The Beginning Of The Universe - Forbes - August 19th, 2020
- Does the Butterfly Effect Exist? Maybe, But Not in the Quantum Realm - Discover Magazine - August 19th, 2020
- Dismantling disciplinary boundaries and decolonizing young India: Decoding the National Educational Policy (20 - The Times of India Blog - August 19th, 2020
- The spread of 'stranger than we can think' - Yahoo Lifestyle - August 19th, 2020
- Raytheon Technologies invests in new transformational STEM high school - PRNewswire - August 19th, 2020
- The Wheel of Time and the Storytelling Problem in the Concept of a Binary - tor.com - August 19th, 2020
- Physicists witness time crystals interacting for the first time ever - New Atlas - August 19th, 2020
- Quantum mechanics is immune to the butterfly effect - The Economist - August 17th, 2020
- Major quantum computational breakthrough is shaking up physics and maths - The Conversation UK - August 17th, 2020
- Physicists watch quantum particles tunnel through solid barriers. Here's what they found. - Space.com - August 17th, 2020
- The science of marketing: taking inspiration from quantum physics - The Drum - August 17th, 2020
- Here's why we need to build a quantum security coalition - World Economic Forum - August 17th, 2020
- The Spread of 'Stranger Than We Can Think' - SFGate - August 17th, 2020
- Nuh Gedik and Pablo Jarillo-Herrero are 2020 Moore Experimental Investigators in Quantum Materials - MIT News - August 17th, 2020
- Students in the news | Announcements - Indiana Gazette - August 17th, 2020
- Indian American Engineer Develops Parachute That Helped Curiosity Land on Mars - India West - August 17th, 2020
- How Quantum Mechanics will Change the Tech Industry - Unite.AI - July 21st, 2020
- Money & Markets: After the virus, make sure you've read the inflationary playbook - E&T Magazine - July 21st, 2020
- Bruce Lee: Inside the mind of the martial arts icon - CNN - July 21st, 2020
- Read Before Pontificating on Quantum Technology - War on the Rocks - July 13th, 2020
- The universe's clock might have bigger ticks than we imagine - Livescience.com - July 13th, 2020
- Testing Einstein's theory of relativity | OUPblog - OUPblog - July 13th, 2020
- Scientists Say This Is the Smallest Unit of Time That Could Exist - lintelligencer - July 13th, 2020