Gene therapy | definition of gene therapy by Medical …

Gene therapy is a rapidly growing field of medicine in which genes are introduced into the body to treat diseases. Genes control heredity and provide the basic biological code for determining a cell’s specific functions. Gene therapy seeks to provide genes that correct or supplant the disease-controlling functions of cells that are not, in essence, doing their job. Somatic gene therapy introduces therapeutic genes at the tissue or cellular level to treat a specific individual. Germ-line gene therapy inserts genes into reproductive cells or possibly into embryos to correct genetic defects that could be passed on to future generations. Initially conceived as an approach for treating inherited diseases, like cystic fibrosis and Huntington’s disease, the scope of potential gene therapies has grown to include treatments for cancers, arthritis, and infectious diseases. Although gene therapy testing in humans has advanced rapidly, many questions surround its use. For example, some scientists are concerned that the therapeutic genes themselves may cause disease. Others fear that germ-line gene therapy may be used to control human development in ways not connected with disease, like intelligence or appearance.The biological basis of gene therapy

Gene therapy has grown out of the science of genetics or how heredity works. Scientists know that life begins in a cell, the basic building block of all multicellular organisms. Humans, for instance, are made up of trillions of cells, each performing a specific function. Within the cell’s nucleus (the center part of a cell that regulates its chemical functions) are pairs of chromosomes. These threadlike structures are made up of a single molecule of DNA (deoxyribonucleic acid), which carries the blueprint of life in the form of codes, or genes, that determine inherited characteristics.

A DNA molecule looks like two ladders with one of the sides taken off both and then twisted around each other. The rungs of these ladders meet (resulting in a spiral staircase-like structure) and are called base pairs. Base pairs are made up of nitrogen molecules and arranged in specific sequences. Millions of these base pairs, or sequences, can make up a single gene, specifically defined as a segment of the chromosome and DNA that contains certain hereditary information. The gene, or combination of genes formed by these base pairs ultimately direct an organism’s growth and characteristics through the production of certain chemicals, primarily proteins, which carry out most of the body’s chemical functions and biological reactions.

Scientists have known how to manipulate a gene’s structure in the laboratory since the early 1970s through a process called gene splicing. The process involves removing a fragment of DNA containing the specific genetic sequence desired, then inserting it into the DNA of another gene. The resultant product is called recombinant DNA and the process is genetic engineering.

There are basically two types of gene therapy. Germ-line gene therapy introduces genes into reproductive cells (sperm and eggs) or someday possibly into embryos in hopes of correcting genetic abnormalities that could be passed on to future generations. Most of the current work in applying gene therapy, however, has been in the realm of somatic gene therapy. In this type of gene therapy, therapeutic genes are inserted into tissue or cells to produce a naturally occurring protein or substance that is lacking or not functioning correctly in an individual patient.

In both types of therapy, scientists need something to transport either the entire gene or a recombinant DNA to the cell’s nucleus, where the chromosomes and DNA reside. In essence, vectors are molecular delivery trucks. One of the first and most popular vectors developed were viruses because they invade cells as part of the natural infection process. Viruses have the potential to be excellent vectors because they have a specific relationship with the host in that they colonize certain cell types and tissues in specific organs. As a result, vectors are chosen according to their attraction to certain cells and areas of the body.

One of the first vectors used was retroviruses. Because these viruses are easily cloned (artificially reproduced) in the laboratory, scientists have studied them extensively and learned a great deal about their biological action. They also have learned how to remove the genetic information that governs viral replication, thus reducing the chances of infection.

Retroviruses work best in actively dividing cells, but cells in the body are relatively stable and do not divide often. As a result, these cells are used primarily for ex vivo (outside the body) manipulation. First, the cells are removed from the patient’s body, and the virus, or vector, carrying the gene is inserted into them. Next, the cells are placed into a nutrient culture where they grow and replicate. Once enough cells are gathered, they are returned to the body, usually by injection into the blood stream. Theoretically, as long as these cells survive, they will provide the desired therapy.

Scientists also have delved into nonviral vectors. These vectors rely on the natural biological process in which cells uptake (or gather) macromolecules. One approach is to use liposomes, globules of fat produced by the body and taken up by cells. Scientists also are investigating the introduction of raw recombinant DNA by injecting it into the bloodstream or placing it on microscopic beads of gold shot into the skin with a “gene-gun.” Another possible vector under development is based on dendrimer molecules. A class of polymers (naturally occurring or artificial substances that have a high molecular weight and formed by smaller molecules of the same or similar substances), is “constructed” in the laboratory by combining these smaller molecules. They have been used in manufacturing Styrofoam, polyethylene cartons, and Plexiglass. In the laboratory, dendrimers have shown the ability to transport genetic material into human cells. They also can be designed to form an affinity for particular cell membranes by attaching to certain sugars and protein groups.

In the early 1970s, scientists proposed “gene surgery” for treating inherited diseases caused by faulty genes. The idea was to take out the disease-causing gene and surgically implant a gene that functioned properly. Although sound in theory, scientists, then and now, lack the biological knowledge or technical expertise needed to perform such a precise surgery in the human body.

However, in 1983, a group of scientists from Baylor College of Medicine in Houston, Texas, proposed that gene therapy could one day be a viable approach for treating Lesch-Nyhan disease, a rare neurological disorder. The scientists conducted experiments in which an enzyme-producing gene (a specific type of protein) for correcting the disease was injected into a group of cells for replication. The scientists theorized the cells could then be injected into people with Lesch-Nyhan disease, thus correcting the genetic defect that caused the disease.

On September 14, 1990, a four-year old girl suffering from a genetic disorder that prevented her body from producing a crucial enzyme became the first person to undergo gene therapy in the United States. Because her body could not produce adenosine deaminase (ADA), she had a weakened immune system, making her extremely susceptible to severe, life-threatening infections. W. French Anderson and colleagues at the National Institutes of Health’s Clinical Center in Bethesda, Maryland, took white blood cells (which are crucial to proper immune system functioning) from the girl, inserted ADA producing genes into them, and then transfused the cells back into the patient. Although the young girl continued to show an increased ability to produce ADA, debate arose as to whether the improvement resulted from the gene therapy or from an additional drug treatment she received.

Nevertheless, a new era of gene therapy began as more and more scientists sought to conduct clinical trial (testing in humans) research in this area. In that same year, gene therapy was tested on patients suffering from melanoma (skin cancer). The goal was to help them produce antibodies (disease fighting substances in the immune system) to battle the cancer.

These experiments have spawned an ever growing number of attempts at gene therapies designed to perform a variety of functions in the body. For example, a gene therapy for cystic fibrosis aims to supply a gene that alters cells, enabling them to produce a specific protein to battle the disease. Another approach was used for brain cancer patients, in which the inserted gene was designed to make the cancer cells more likely to respond to drug treatment. Another gene therapy approach for patients suffering from artery blockage, which can lead to strokes, induces the growth of new blood vessels near clogged arteries, thus ensuring normal blood circulation.

The medical establishment’s contribution to transgenic research has been supported by increased government funding. In 1991, the U.S. government provided $58 million for gene therapy research, with increases in funding of $15-40 million dollars a year over the following four years. With fierce competition over the promise of societal benefit in addition to huge profits, large pharmaceutical corporations have moved to the forefront of transgenic research. In an effort to be first in developing new therapies, and armed with billions of dollars of research funds, such corporations are making impressive strides toward making gene therapy a viable reality in the treatment of once elusive diseases.

The potential scope of gene therapy is enormous. More than 4,200 diseases have been identified as resulting directly from abnormal genes, and countless others that may be partially influenced by a person’s genetic makeup. Initial research has concentrated on developing gene therapies for diseases whose genetic origins have been established and for other diseases that can be cured or improved by substances genes produce.

The following are examples of potential gene therapies. People suffering from cystic fibrosis lack a gene needed to produce a salt-regulating protein. This protein regulates the flow of chloride into epithelial cells, (the cells that line the inner and outer skin layers) that cover the air passages of the nose and lungs. Without this regulation, patients with cystic fibrosis build up a thick mucus that makes them prone to lung infections. A gene therapy technique to correct this abnormality might employ an adenovirus to transfer a normal copy of what scientists call the cystic fibrosis transmembrane conductance regulator, or CTRF, gene. The gene is introduced into the patient by spraying it into the nose or lungs. Researchers announced in 2004 that they had, for the first time, treated a dominant neurogenerative disease called Spinocerebella ataxia type 1, with gene therapy. This could lead to treating similar diseases such as Huntingtons disease. They also announced a single intravenous injection could deliver therapy to all muscles, perhaps providing hope to people with muscular dystrophy.

Although great strides have been made in gene therapy in a relatively short time, its potential usefulness has been limited by lack of scientific data concerning the multitude of functions that genes control in the human body. For instance, it is now known that the vast majority of genetic material does not store information for the creation of proteins, but rather is involved in the control and regulation of gene expression, and is, thus, much more difficult to interpret. Even so, each individual cell in the body carries thousands of genes coding for proteins, with some estimates as high as 150,000 genes. For gene therapy to advance to its full potential, scientists must discover the biological role of each of these individual genes and where the base pairs that make them up are located on DNA.

To address this issue, the National Institutes of Health initiated the Human Genome Project in 1990. Led by James D. Watson (one of the co-discoverers of the chemical makeup of DNA) the project’s 15-year goal is to map the entire human genome (a combination of the words gene and chromosomes). A genome map would clearly identify the location of all genes as well as the more than three billion base pairs that make them up. With a precise knowledge of gene locations and functions, scientists may one day be able to conquer or control diseases that have plagued humanity for centuries.

Gene therapy seems elegantly simple in its concept: supply the human body with a gene that can correct a biological malfunction that causes a disease. However, there are many obstacles and some distinct questions concerning the viability of gene therapy. For example, viral vectors must be carefully controlled lest they infect the patient with a viral disease. Some vectors, like retroviruses, also can enter cells functioning properly and interfere with the natural biological processes, possibly leading to other diseases. Other viral vectors, like the adenoviruses, often are recognized and destroyed by the immune system so their therapeutic effects are short-lived. Maintaining gene expression so it performs its role properly after vector delivery is difficult. As a result, some therapies need to be repeated often to provide long-lasting benefits.

One of the most pressing issues, however, is gene regulation. Genes work in concert to regulate their functioning. In other words, several genes may play a part in turning other genes on and off. For example, certain genes work together to stimulate cell division and growth, but if these are not regulated, the inserted genes could cause tumor formation and cancer. Another difficulty is learning how to make the gene go into action only when needed. For the best and safest therapeutic effort, a specific gene should turn on, for example, when certain levels of a protein or enzyme are low and must be replaced. But the gene also should remain dormant when not needed to ensure it doesn’t oversupply a substance and disturb the body’s delicate chemical makeup.

One approach to gene regulation is to attach other genes that detect certain biological activities and then react as a type of automatic off-and-on switch that regulates the activity of the other genes according to biological cues. Although still in the rudimentary stages, researchers are making headway in inhibiting some gene functioning by using a synthetic DNA to block gene transcriptions (the copying of genetic information). This approach may have implications for gene therapy.

While gene therapy holds promise as a revolutionary approach to treating disease, ethical concerns over its use and ramifications have been expressed by scientists and lay people alike. For example, since much needs to be learned about how these genes actually work and their long-term effect, is it ethical to test these therapies on humans, where they could have a disastrous result? As with most clinical trials concerning new therapies, including many drugs, the patients participating in these studies usually have not responded to more established therapies and often are so ill the novel therapy is their only hope for long-term survival.

Another questionable outgrowth of gene therapy is that scientists could possibly manipulate genes to genetically control traits in human offspring that are not health related. For example, perhaps a gene could be inserted to ensure that a child would not be bald, a seemingly harmless goal. However, what if genetic manipulation was used to alter skin color, prevent homosexuality, or ensure good looks? If a gene is found that can enhance intelligence of children who are not yet born, will everyone in society, the rich and the poor, have access to the technology or will it be so expensive only the elite can afford it?

The Human Genome Project, which plays such an integral role for the future of gene therapy, also has social repercussions. If individual genetic codes can be determined, will such information be used against people? For example, will someone more susceptible to a disease have to pay higher insurance premiums or be denied health insurance altogether? Will employers discriminate between two potential employees, one with a “healthy” genome and the other with genetic abnormalities?

Some of these concerns can be traced back to the eugenics movement popular in the first half of the twentieth century. This genetic “philosophy” was a societal movement that encouraged people with “positive” traits to reproduce while those with less desirable traits were sanctioned from having children. Eugenics was used to pass strict immigration laws in the United States, barring less suitable people from entering the country lest they reduce the quality of the country’s collective gene pool. Probably the most notorious example of eugenics in action was the rise of Nazism in Germany, which resulted in the Eugenic Sterilization Law of 1933. The law required sterilization for those suffering from certain disabilities and even for some who were simply deemed “ugly.” To ensure that this novel science is not abused, many governments have established organizations specifically for overseeing the development of gene therapy. In the United States, the Food and Drug Administration (FDA) and the National Institutes of Health require scientists to take a precise series of steps and meet stringent requirements before proceeding with clinical trials. As of mid-2004, more than 300 companies were carrying out gene medicine developments and 500 clinical trials were underway. How to deliver the therapy is the key to unlocking many of the researchers discoveries.

In fact, gene therapy has been immersed in more controversy and surrounded by more scrutiny in both the health and ethical arena than most other technologies (except, perhaps, for cloning) that promise to substantially change society. Despite the health and ethical questions surrounding gene therapy, the field will continue to grow and is likely to change medicine faster than any previous medical advancement.

Abella, Harold. “Gene Therapy May Save Limbs.” Diagnostic Imaging (May 1, 2003): 16.

Christensen R. “Cutaneous Gene TherapyAn Update.” Histochemical Cell Biology (January 2001): 73-82.

“Gene Therapy Important Part of Cancer Research.” Cancer Gene Therapy Week (June 30, 2003): 12.

“Initial Sequencing and Analysis of the Human Genome.” Nature (February 15, 2001): 860-921.

Kingsman, Alan. “Gene Therapy Moves On.” SCRIP World Pharmaceutical News (July 7, 2004): 19:ndash;21.

Nevin, Norman. “What Has Happened to Gene Therapy?” European Journal of Pediatrics (2000): S240-S242.

“New DNA Vaccine Targets Proteins Expressed in Cervical Cancer Cells.” Gene Therapy Weekly (September 9, 2004): 14.

“New Research on the Progress of Gene Therapy Presented at Meeting.” Obesity, Fitness & Wellness Week (July 3, 2004): 405.

Pekkanen, John. “Genetics: Medicine’s Amazing Leap.” Readers Digest (September 1991): 23-32.

Silverman, Jennifer, and Steve Perlstein. “Genome Project Completed.” Family Practice News (May 15, 2003): 50-51.

“Study Highlights Potential Danger of Gene Therapy.” Drug Week (June 20, 2003): 495.

“Study May Help Scientists Develop Safer Mthods for Gene Therapy.” AIDS Weekly (June 30, 2003): 32.

Trabis, J. “With Gene Therapy, Ears Grow New Sensory Cells.” Science News (June 7, 2003): 355.

National Human Genome Research Institute. The National Institutes of Health. 9000 Rockville Pike, Bethesda, MD 20892. (301) 496-2433.

Online Mendelian Inheritance in Man. Online genetic testing information sponsored by National Center for Biotechnology Information.

Go here to read the rest:

Gene therapy | definition of gene therapy by Medical …

Related Post

Comments are closed.