Drug's effect on Alzheimer's may depend on severity of disease

PUBLIC RELEASE DATE:

15-Sep-2014

Contact: Sharon Parmet sparmet@uic.edu 312-413-2695 University of Illinois at Chicago @uicnews

A cancer drug that has shown promise against Alzheimer's disease in mice and has begun early clinical trials has yielded perplexing results in a novel mouse model of AD that mimics the genetics and pathology of the human disease more closely than any other animal model.

The drug, bexarotene, was found to reduce levels of the neurotoxic protein amyloid-beta in experimental mice with late-stage Alzheimer's but to increase levels during early stages of disease.

The finding, by researchers at the University of Illinois at Chicago College of Medicine, was reported online in The Journal of Biological Chemistry by Mary Jo LaDu, who in 2012 developed a transgenic mouse that is now regarded as the best animal model of the human disease. That experimental mouse carries a human gene that confers on people a 15-fold elevated risk of developing AD, making it the most important known genetic risk factor for the disease.

Alzheimer's disease is the most common form of dementia, affecting more than five million Americans. The disease is progressive and eventually fatal. One of the hallmarks of AD is the appearance of dense plaques in the brain composed of clumps of amyloid-beta. But recent research indicates that smaller, soluble forms of amyloid-beta -- rather than the solid plaques -- are responsible for the death of nerve cells that leads to cognitive decline.

Humans carry a gene for a protein in cells called apolipoprotein E, which helps clear amyloid-beta from the brain by binding to it and breaking it down. LaDu's mice carry the most unfortunate variant in humans, called APOE4, or APOE3, which is neutral for AD risk.

"APOE4 is the greatest genetic risk factor for Alzheimer's disease," said LaDu, who is professor of anatomy and cell biology at UIC. "Our previous work showed that compared to APOE3, the apolipoprotein produced by the APOE4 gene does not bind well to amyloid-beta and so does not clear the neurotoxin from the brain."

Results of previous studies in mice of bexarotene's effect on AD have been mixed, and none of those studies were done in mice that carry a human APOE gene and also develop progressive, AD-like pathology. The UIC research presented in Copenhagen is the first to do so.

See the original post here:

Drug's effect on Alzheimer's may depend on severity of disease

Related Posts

Comments are closed.