12345...102030...


Gene therapy – Wikipedia

In the medicine field gene therapy (also called human gene transfer) is the therapeutic delivery of nucleic acid into a patient’s cells as a drug to treat disease.[1][2] The first attempt at modifying human DNA was performed in 1980 by Martin Cline, but the first successful nuclear gene transfer in humans, approved by the National Institutes of Health, was performed in May 1989.[3] The first therapeutic use of gene transfer as well as the first direct insertion of human DNA into the nuclear genome was performed by French Anderson in a trial starting in September 1990.

Between 1989 and February 2016, over 2,300 clinical trials were conducted, with more than half of them in phase I.[4]

Not all medical procedures that introduce alterations to a patient’s genetic makeup can be considered gene therapy. Bone marrow transplantation and organ transplants in general have been found to introduce foreign DNA into patients.[5] Gene therapy is defined by the precision of the procedure and the intention of direct therapeutic effect.

Gene therapy was conceptualized in 1972, by authors who urged caution before commencing human gene therapy studies.

The first attempt, an unsuccessful one, at gene therapy (as well as the first case of medical transfer of foreign genes into humans not counting organ transplantation) was performed by Martin Cline on 10 July 1980.[6][7] Cline claimed that one of the genes in his patients was active six months later, though he never published this data or had it verified[8] and even if he is correct, it’s unlikely it produced any significant beneficial effects treating beta-thalassemia.

After extensive research on animals throughout the 1980s and a 1989 bacterial gene tagging trial on humans, the first gene therapy widely accepted as a success was demonstrated in a trial that started on 14 September 1990, when Ashi DeSilva was treated for ADA-SCID.[9]

The first somatic treatment that produced a permanent genetic change was initiated in 1993. The goal was to cure malignant brain tumors by using recombinant DNA to transfer a gene making the tumor cells sensitive to a drug that in turn would cause the tumor cells to die.[10]

Gene therapy is a way to fix a genetic problem at its source. The polymers are either translated into proteins, interfere with target gene expression, or possibly correct genetic mutations.

The most common form uses DNA that encodes a functional, therapeutic gene to replace a mutated gene. The polymer molecule is packaged within a “vector”, which carries the molecule inside cells.

Early clinical failures led to dismissals of gene therapy. Clinical successes since 2006 regained researchers’ attention, although as of 2014[update], it was still largely an experimental technique.[11] These include treatment of retinal diseases Leber’s congenital amaurosis[12][13][14][15] and choroideremia,[16] X-linked SCID,[17] ADA-SCID,[18][19] adrenoleukodystrophy,[20] chronic lymphocytic leukemia (CLL),[21] acute lymphocytic leukemia (ALL),[22] multiple myeloma,[23] haemophilia,[19] and Parkinson’s disease.[24] Between 2013 and April 2014, US companies invested over $600 million in the field.[25]

The first commercial gene therapy, Gendicine, was approved in China in 2003 for the treatment of certain cancers.[26] In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia.[27]In 2012 Glybera, a treatment for a rare inherited disorder, Lipoprotein lipase deficiency became the first treatment to be approved for clinical use in either Europe or the United States after its endorsement by the European Commission.[11][28]

Following early advances in genetic engineering of bacteria, cells, and small animals, scientists started considering how to apply it to medicine. Two main approaches were considered replacing or disrupting defective genes.[29] Scientists focused on diseases caused by single-gene defects, such as cystic fibrosis, haemophilia, muscular dystrophy, thalassemia, and sickle cell anemia. Glybera treats one such disease, caused by a defect in lipoprotein lipase.[28]

DNA must be administered, reach the damaged cells, enter the cell and either express or disrupt a protein.[30] Multiple delivery techniques have been explored. The initial approach incorporated DNA into an engineered virus to deliver the DNA into a chromosome.[31][32] Naked DNA approaches have also been explored, especially in the context of vaccine development.[33]

Generally, efforts focused on administering a gene that causes a needed protein to be expressed. More recently, increased understanding of nuclease function has led to more direct DNA editing, using techniques such as zinc finger nucleases and CRISPR. The vector incorporates genes into chromosomes. The expressed nucleases then knock out and replace genes in the chromosome. As of 2014[update] these approaches involve removing cells from patients, editing a chromosome and returning the transformed cells to patients.[34]

Gene editing is a potential approach to alter the human genome to treat genetic diseases,[35] viral diseases,[36] and cancer.[37] As of 2016[update] these approaches were still years from being medicine.[38][39]

Gene therapy may be classified into two types:

In somatic cell gene therapy (SCGT), the therapeutic genes are transferred into any cell other than a gamete, germ cell, gametocyte, or undifferentiated stem cell. Any such modifications affect the individual patient only, and are not inherited by offspring. Somatic gene therapy represents mainstream basic and clinical research, in which therapeutic DNA (either integrated in the genome or as an external episome or plasmid) is used to treat disease.

Over 600 clinical trials utilizing SCGT are underway[when?] in the US. Most focus on severe genetic disorders, including immunodeficiencies, haemophilia, thalassaemia, and cystic fibrosis. Such single gene disorders are good candidates for somatic cell therapy. The complete correction of a genetic disorder or the replacement of multiple genes is not yet possible. Only a few of the trials are in the advanced stages.[40] [needs update]

In germline gene therapy (GGT), germ cells (sperm or egg cells) are modified by the introduction of functional genes into their genomes. Modifying a germ cell causes all the organism’s cells to contain the modified gene. The change is therefore heritable and passed on to later generations. Australia, Canada, Germany, Israel, Switzerland, and the Netherlands[41] prohibit GGT for application in human beings, for technical and ethical reasons, including insufficient knowledge about possible risks to future generations[41] and higher risks versus SCGT.[42] The US has no federal controls specifically addressing human genetic modification (beyond FDA regulations for therapies in general).[41][43][44][45]

The delivery of DNA into cells can be accomplished by multiple methods. The two major classes are recombinant viruses (sometimes called biological nanoparticles or viral vectors) and naked DNA or DNA complexes (non-viral methods).

In order to replicate, viruses introduce their genetic material into the host cell, tricking the host’s cellular machinery into using it as blueprints for viral proteins. Retroviruses go a stage further by having their genetic material copied into the genome of the host cell. Scientists exploit this by substituting a virus’s genetic material with therapeutic DNA. (The term ‘DNA’ may be an oversimplification, as some viruses contain RNA, and gene therapy could take this form as well.) A number of viruses have been used for human gene therapy, including retroviruses, adenoviruses, herpes simplex, vaccinia, and adeno-associated virus.[4] Like the genetic material (DNA or RNA) in viruses, therapeutic DNA can be designed to simply serve as a temporary blueprint that is degraded naturally or (at least theoretically) to enter the host’s genome, becoming a permanent part of the host’s DNA in infected cells.

Non-viral methods present certain advantages over viral methods, such as large scale production and low host immunogenicity. However, non-viral methods initially produced lower levels of transfection and gene expression, and thus lower therapeutic efficacy. Later technology remedied this deficiency.[citation needed]

Methods for non-viral gene therapy include the injection of naked DNA, electroporation, the gene gun, sonoporation, magnetofection, the use of oligonucleotides, lipoplexes, dendrimers, and inorganic nanoparticles.

Some of the unsolved problems include:

Three patients’ deaths have been reported in gene therapy trials, putting the field under close scrutiny. The first was that of Jesse Gelsinger, who died in 1999 because of immune rejection response.[52] One X-SCID patient died of leukemia in 2003.[9] In 2007, a rheumatoid arthritis patient died from an infection; the subsequent investigation concluded that the death was not related to gene therapy.[53]

In 1972 Friedmann and Roblin authored a paper in Science titled “Gene therapy for human genetic disease?”[54] Rogers (1970) was cited for proposing that exogenous good DNA be used to replace the defective DNA in those who suffer from genetic defects.[55]

In 1984 a retrovirus vector system was designed that could efficiently insert foreign genes into mammalian chromosomes.[56]

The first approved gene therapy clinical research in the US took place on 14 September 1990, at the National Institutes of Health (NIH), under the direction of William French Anderson.[57] Four-year-old Ashanti DeSilva received treatment for a genetic defect that left her with ADA-SCID, a severe immune system deficiency. The defective gene of the patient’s blood cells was replaced by the functional variant. Ashantis immune system was partially restored by the therapy. Production of the missing enzyme was temporarily stimulated, but the new cells with functional genes were not generated. She led a normal life only with the regular injections performed every two months. The effects were successful, but temporary.[58]

Cancer gene therapy was introduced in 1992/93 (Trojan et al. 1993).[59] The treatment of glioblastoma multiforme, the malignant brain tumor whose outcome is always fatal, was done using a vector expressing antisense IGF-I RNA (clinical trial approved by NIH protocolno.1602 November 24, 1993,[60] and by the FDA in 1994). This therapy also represents the beginning of cancer immunogene therapy, a treatment which proves to be effective due to the anti-tumor mechanism of IGF-I antisense, which is related to strong immune and apoptotic phenomena.

In 1992 Claudio Bordignon, working at the Vita-Salute San Raffaele University, performed the first gene therapy procedure using hematopoietic stem cells as vectors to deliver genes intended to correct hereditary diseases.[61] In 2002 this work led to the publication of the first successful gene therapy treatment for adenosine deaminase deficiency (ADA-SCID). The success of a multi-center trial for treating children with SCID (severe combined immune deficiency or “bubble boy” disease) from 2000 and 2002, was questioned when two of the ten children treated at the trial’s Paris center developed a leukemia-like condition. Clinical trials were halted temporarily in 2002, but resumed after regulatory review of the protocol in the US, the United Kingdom, France, Italy, and Germany.[62]

In 1993 Andrew Gobea was born with SCID following prenatal genetic screening. Blood was removed from his mother’s placenta and umbilical cord immediately after birth, to acquire stem cells. The allele that codes for adenosine deaminase (ADA) was obtained and inserted into a retrovirus. Retroviruses and stem cells were mixed, after which the viruses inserted the gene into the stem cell chromosomes. Stem cells containing the working ADA gene were injected into Andrew’s blood. Injections of the ADA enzyme were also given weekly. For four years T cells (white blood cells), produced by stem cells, made ADA enzymes using the ADA gene. After four years more treatment was needed.[63]

Jesse Gelsinger’s death in 1999 impeded gene therapy research in the US.[64][65] As a result, the FDA suspended several clinical trials pending the reevaluation of ethical and procedural practices.[66]

The modified cancer gene therapy strategy of antisense IGF-I RNA (NIH n 1602)[60] using antisense / triple helix anti-IGF-I approach was registered in 2002 by Wiley gene therapy clinical trial – n 635 and 636. The approach has shown promising results in the treatment of six different malignant tumors: glioblastoma, cancers of liver, colon, prostate, uterus, and ovary (Collaborative NATO Science Programme on Gene Therapy USA, France, Poland n LST 980517 conducted by J. Trojan) (Trojan et al., 2012). This anti-gene antisense/triple helix therapy has proven to be efficient, due to the mechanism stopping simultaneously IGF-I expression on translation and transcription levels, strengthening anti-tumor immune and apoptotic phenomena.

Sickle-cell disease can be treated in mice.[67] The mice which have essentially the same defect that causes human cases used a viral vector to induce production of fetal hemoglobin (HbF), which normally ceases to be produced shortly after birth. In humans, the use of hydroxyurea to stimulate the production of HbF temporarily alleviates sickle cell symptoms. The researchers demonstrated this treatment to be a more permanent means to increase therapeutic HbF production.[68]

A new gene therapy approach repaired errors in messenger RNA derived from defective genes. This technique has the potential to treat thalassaemia, cystic fibrosis and some cancers.[69]

Researchers created liposomes 25 nanometers across that can carry therapeutic DNA through pores in the nuclear membrane.[70]

In 2003 a research team inserted genes into the brain for the first time. They used liposomes coated in a polymer called polyethylene glycol, which unlike viral vectors, are small enough to cross the bloodbrain barrier.[71]

Short pieces of double-stranded RNA (short, interfering RNAs or siRNAs) are used by cells to degrade RNA of a particular sequence. If a siRNA is designed to match the RNA copied from a faulty gene, then the abnormal protein product of that gene will not be produced.[72]

Gendicine is a cancer gene therapy that delivers the tumor suppressor gene p53 using an engineered adenovirus. In 2003, it was approved in China for the treatment of head and neck squamous cell carcinoma.[26]

In March researchers announced the successful use of gene therapy to treat two adult patients for X-linked chronic granulomatous disease, a disease which affects myeloid cells and damages the immune system. The study is the first to show that gene therapy can treat the myeloid system.[73]

In May a team reported a way to prevent the immune system from rejecting a newly delivered gene.[74] Similar to organ transplantation, gene therapy has been plagued by this problem. The immune system normally recognizes the new gene as foreign and rejects the cells carrying it. The research utilized a newly uncovered network of genes regulated by molecules known as microRNAs. This natural function selectively obscured their therapeutic gene in immune system cells and protected it from discovery. Mice infected with the gene containing an immune-cell microRNA target sequence did not reject the gene.

In August scientists successfully treated metastatic melanoma in two patients using killer T cells genetically retargeted to attack the cancer cells.[75]

In November researchers reported on the use of VRX496, a gene-based immunotherapy for the treatment of HIV that uses a lentiviral vector to deliver an antisense gene against the HIV envelope. In a phase I clinical trial, five subjects with chronic HIV infection who had failed to respond to at least two antiretroviral regimens were treated. A single intravenous infusion of autologous CD4 T cells genetically modified with VRX496 was well tolerated. All patients had stable or decreased viral load; four of the five patients had stable or increased CD4 T cell counts. All five patients had stable or increased immune response to HIV antigens and other pathogens. This was the first evaluation of a lentiviral vector administered in a US human clinical trial.[76][77]

In May researchers announced the first gene therapy trial for inherited retinal disease. The first operation was carried out on a 23-year-old British male, Robert Johnson, in early 2007.[78]

Leber’s congenital amaurosis is an inherited blinding disease caused by mutations in the RPE65 gene. The results of a small clinical trial in children were published in April.[12] Delivery of recombinant adeno-associated virus (AAV) carrying RPE65 yielded positive results. In May two more groups reported positive results in independent clinical trials using gene therapy to treat the condition. In all three clinical trials, patients recovered functional vision without apparent side-effects.[12][13][14][15]

In September researchers were able to give trichromatic vision to squirrel monkeys.[79] In November 2009, researchers halted a fatal genetic disorder called adrenoleukodystrophy in two children using a lentivirus vector to deliver a functioning version of ABCD1, the gene that is mutated in the disorder.[80]

An April paper reported that gene therapy addressed achromatopsia (color blindness) in dogs by targeting cone photoreceptors. Cone function and day vision were restored for at least 33 months in two young specimens. The therapy was less efficient for older dogs.[81]

In September it was announced that an 18-year-old male patient in France with beta-thalassemia major had been successfully treated.[82] Beta-thalassemia major is an inherited blood disease in which beta haemoglobin is missing and patients are dependent on regular lifelong blood transfusions.[83] The technique used a lentiviral vector to transduce the human -globin gene into purified blood and marrow cells obtained from the patient in June 2007.[84] The patient’s haemoglobin levels were stable at 9 to 10 g/dL. About a third of the hemoglobin contained the form introduced by the viral vector and blood transfusions were not needed.[84][85] Further clinical trials were planned.[86] Bone marrow transplants are the only cure for thalassemia, but 75% of patients do not find a matching donor.[85]

Cancer immunogene therapy using modified antigene, antisense/triple helix approach was introduced in South America in 2010/11 in La Sabana University, Bogota (Ethical Committee 14 December 2010, no P-004-10). Considering the ethical aspect of gene diagnostic and gene therapy targeting IGF-I, the IGF-I expressing tumors i.e. lung and epidermis cancers were treated (Trojan et al. 2016).[87][88]

In 2007 and 2008, a man (Timothy Ray Brown) was cured of HIV by repeated hematopoietic stem cell transplantation (see also allogeneic stem cell transplantation, allogeneic bone marrow transplantation, allotransplantation) with double-delta-32 mutation which disables the CCR5 receptor. This cure was accepted by the medical community in 2011.[89] It required complete ablation of existing bone marrow, which is very debilitating.

In August two of three subjects of a pilot study were confirmed to have been cured from chronic lymphocytic leukemia (CLL). The therapy used genetically modified T cells to attack cells that expressed the CD19 protein to fight the disease.[21] In 2013, the researchers announced that 26 of 59 patients had achieved complete remission and the original patient had remained tumor-free.[90]

Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease as well as treatment for the damage that occurs to the heart after myocardial infarction.[91][92]

In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia; it delivers the gene encoding for VEGF.[93][27] Neovasculogen is a plasmid encoding the CMV promoter and the 165 amino acid form of VEGF.[94][95]

The FDA approved Phase 1 clinical trials on thalassemia major patients in the US for 10 participants in July.[96] The study was expected to continue until 2015.[86]

In July 2012, the European Medicines Agency recommended approval of a gene therapy treatment for the first time in either Europe or the United States. The treatment used Alipogene tiparvovec (Glybera) to compensate for lipoprotein lipase deficiency, which can cause severe pancreatitis.[97] The recommendation was endorsed by the European Commission in November 2012[11][28][98][99] and commercial rollout began in late 2014.[100] Alipogene tiparvovec was expected to cost around $1.6 million per treatment in 2012,[101] revised to $1 million in 2015,[102] making it the most expensive medicine in the world at the time.[103] As of 2016[update], only the patients treated in clinical trials and a patient who paid the full price for treatment have received the drug.[104]

In December 2012, it was reported that 10 of 13 patients with multiple myeloma were in remission “or very close to it” three months after being injected with a treatment involving genetically engineered T cells to target proteins NY-ESO-1 and LAGE-1, which exist only on cancerous myeloma cells.[23]

In March researchers reported that three of five adult subjects who had acute lymphocytic leukemia (ALL) had been in remission for five months to two years after being treated with genetically modified T cells which attacked cells with CD19 genes on their surface, i.e. all B-cells, cancerous or not. The researchers believed that the patients’ immune systems would make normal T-cells and B-cells after a couple of months. They were also given bone marrow. One patient relapsed and died and one died of a blood clot unrelated to the disease.[22]

Following encouraging Phase 1 trials, in April, researchers announced they were starting Phase 2 clinical trials (called CUPID2 and SERCA-LVAD) on 250 patients[105] at several hospitals to combat heart disease. The therapy was designed to increase the levels of SERCA2, a protein in heart muscles, improving muscle function.[106] The FDA granted this a Breakthrough Therapy Designation to accelerate the trial and approval process.[107] In 2016 it was reported that no improvement was found from the CUPID 2 trial.[108]

In July researchers reported promising results for six children with two severe hereditary diseases had been treated with a partially deactivated lentivirus to replace a faulty gene and after 732 months. Three of the children had metachromatic leukodystrophy, which causes children to lose cognitive and motor skills.[109] The other children had Wiskott-Aldrich syndrome, which leaves them to open to infection, autoimmune diseases, and cancer.[110] Follow up trials with gene therapy on another six children with Wiskott-Aldrich syndrome were also reported as promising.[111][112]

In October researchers reported that two children born with adenosine deaminase severe combined immunodeficiency disease (ADA-SCID) had been treated with genetically engineered stem cells 18 months previously and that their immune systems were showing signs of full recovery. Another three children were making progress.[19] In 2014 a further 18 children with ADA-SCID were cured by gene therapy.[113] ADA-SCID children have no functioning immune system and are sometimes known as “bubble children.”[19]

Also in October researchers reported that they had treated six hemophilia sufferers in early 2011 using an adeno-associated virus. Over two years later all six were producing clotting factor.[19][114]

In January researchers reported that six choroideremia patients had been treated with adeno-associated virus with a copy of REP1. Over a six-month to two-year period all had improved their sight.[115][116] By 2016, 32 patients had been treated with positive results and researchers were hopeful the treatment would be long-lasting.[16] Choroideremia is an inherited genetic eye disease with no approved treatment, leading to loss of sight.

In March researchers reported that 12 HIV patients had been treated since 2009 in a trial with a genetically engineered virus with a rare mutation (CCR5 deficiency) known to protect against HIV with promising results.[117][118]

Clinical trials of gene therapy for sickle cell disease were started in 2014.[119][120] There is a need for high quality randomised controlled trials assessing the risks and benefits involved with gene therapy for people with sickle cell disease.[121][needs update]

In February LentiGlobin BB305, a gene therapy treatment undergoing clinical trials for treatment of beta thalassemia gained FDA “breakthrough” status after several patients were able to forgo the frequent blood transfusions usually required to treat the disease.[122]

In March researchers delivered a recombinant gene encoding a broadly neutralizing antibody into monkeys infected with simian HIV; the monkeys’ cells produced the antibody, which cleared them of HIV. The technique is named immunoprophylaxis by gene transfer (IGT). Animal tests for antibodies to ebola, malaria, influenza, and hepatitis were underway.[123][124]

In March, scientists, including an inventor of CRISPR, Jennifer Doudna, urged a worldwide moratorium on germline gene therapy, writing “scientists should avoid even attempting, in lax jurisdictions, germline genome modification for clinical application in humans” until the full implications “are discussed among scientific and governmental organizations”.[125][126][127][128]

In October, researchers announced that they had treated a baby girl, Layla Richards, with an experimental treatment using donor T-cells genetically engineered using TALEN to attack cancer cells. One year after the treatment she was still free of her cancer (a highly aggressive form of acute lymphoblastic leukaemia [ALL]).[129] Children with highly aggressive ALL normally have a very poor prognosis and Layla’s disease had been regarded as terminal before the treatment.[130]

In December, scientists of major world academies called for a moratorium on inheritable human genome edits, including those related to CRISPR-Cas9 technologies[131] but that basic research including embryo gene editing should continue.[132]

In April the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed a gene therapy treatment called Strimvelis[133][134] and the European Commission approved it in June.[135] This treats children born with adenosine deaminase deficiency and who have no functioning immune system. This was the second gene therapy treatment to be approved in Europe.[136]

In October, Chinese scientists reported they had started a trial to genetically modify T-cells from 10 adult patients with lung cancer and reinject the modified T-cells back into their bodies to attack the cancer cells. The T-cells had the PD-1 protein (which stops or slows the immune response) removed using CRISPR-Cas9.[137][138]

A 2016 Cochrane systematic review looking at data from four trials on topical cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy does not support its clinical use as a mist inhaled into the lungs to treat cystic fibrosis patients with lung infections. One of the four trials did find weak evidence that liposome-based CFTR gene transfer therapy may lead to a small respiratory improvement for people with CF. This weak evidence is not enough to make a clinical recommendation for routine CFTR gene therapy.[139]

In February Kite Pharma announced results from a clinical trial of CAR-T cells in around a hundred people with advanced Non-Hodgkin lymphoma.[140]

In March, French scientists reported on clinical research of gene therapy to treat sickle-cell disease.[141]

In August, the FDA approved tisagenlecleucel for acute lymphoblastic leukemia.[142] Tisagenlecleucel is an adoptive cell transfer therapy for B-cell acute lymphoblastic leukemia; T cells from a person with cancer are removed, genetically engineered to make a specific T-cell receptor (a chimeric T cell receptor, or “CAR-T”) that reacts to the cancer, and are administered back to the person. The T cells are engineered to target a protein called CD19 that is common on B cells. This is the first form of gene therapy to be approved in the United States. In October, a similar therapy called axicabtagene ciloleucel was approved for non-Hodgkin lymphoma.[143]

In December the results of using an adeno-associated virus with blood clotting factor VIII to treat nine haemophilia A patients were published. Six of the seven patients on the high dose regime increased the level of the blood clotting VIII to normal levels. The low and medium dose regimes had no effect on the patient’s blood clotting levels.[144][145]

In December, the FDA approved Luxturna, the first in vivo gene therapy, for the treatment of blindness due to Leber’s congenital amaurosis.[146] The price of this treatment was 850,000 US dollars for both eyes.[147][148]

In February 2019, medical scientists working with Sangamo Therapeutics, headquartered in Richmond, California, announced the first ever “in body” human gene editing therapy to permanently alter DNA – in a patient with Hunter Syndrome.[149] Clinical trials by Sangamo involving gene editing using Zinc Finger Nuclease (ZFN) are ongoing.[150]

Speculated uses for gene therapy include:

Athletes might adopt gene therapy technologies to improve their performance.[151] Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.[152]

Genetic engineering could be used to cure diseases, but also to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence. Ethical claims about germline engineering include beliefs that every fetus has a right to remain genetically unmodified, that parents hold the right to genetically modify their offspring, and that every child has the right to be born free of preventable diseases.[153][154][155] For parents, genetic engineering could be seen as another child enhancement technique to add to diet, exercise, education, training, cosmetics, and plastic surgery.[156][157] Another theorist claims that moral concerns limit but do not prohibit germline engineering.[158]

Possible regulatory schemes include a complete ban, provision to everyone, or professional self-regulation. The American Medical Associations Council on Ethical and Judicial Affairs stated that “genetic interventions to enhance traits should be considered permissible only in severely restricted situations: (1) clear and meaningful benefits to the fetus or child; (2) no trade-off with other characteristics or traits; and (3) equal access to the genetic technology, irrespective of income or other socioeconomic characteristics.”[159]

As early in the history of biotechnology as 1990, there have been scientists opposed to attempts to modify the human germline using these new tools,[160] and such concerns have continued as technology progressed.[161][162] With the advent of new techniques like CRISPR, in March 2015 a group of scientists urged a worldwide moratorium on clinical use of gene editing technologies to edit the human genome in a way that can be inherited.[125][126][127][128] In April 2015, researchers sparked controversy when they reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[163][164] A committee of the American National Academy of Sciences and National Academy of Medicine gave qualified support to human genome editing in 2017[165][166] once answers have been found to safety and efficiency problems “but only for serious conditions under stringent oversight.”[167]

Regulations covering genetic modification are part of general guidelines about human-involved biomedical research. There are no international treaties which are legally binding in this area, but there are recommendations for national laws from various bodies.

The Helsinki Declaration (Ethical Principles for Medical Research Involving Human Subjects) was amended by the World Medical Association’s General Assembly in 2008. This document provides principles physicians and researchers must consider when involving humans as research subjects. The Statement on Gene Therapy Research initiated by the Human Genome Organization (HUGO) in 2001 provides a legal baseline for all countries. HUGOs document emphasizes human freedom and adherence to human rights, and offers recommendations for somatic gene therapy, including the importance of recognizing public concerns about such research.[168]

No federal legislation lays out protocols or restrictions about human genetic engineering. This subject is governed by overlapping regulations from local and federal agencies, including the Department of Health and Human Services, the FDA and NIH’s Recombinant DNA Advisory Committee. Researchers seeking federal funds for an investigational new drug application, (commonly the case for somatic human genetic engineering,) must obey international and federal guidelines for the protection of human subjects.[169]

NIH serves as the main gene therapy regulator for federally funded research. Privately funded research is advised to follow these regulations. NIH provides funding for research that develops or enhances genetic engineering techniques and to evaluate the ethics and quality in current research. The NIH maintains a mandatory registry of human genetic engineering research protocols that includes all federally funded projects.

An NIH advisory committee published a set of guidelines on gene manipulation.[170] The guidelines discuss lab safety as well as human test subjects and various experimental types that involve genetic changes. Several sections specifically pertain to human genetic engineering, including Section III-C-1. This section describes required review processes and other aspects when seeking approval to begin clinical research involving genetic transfer into a human patient.[171] The protocol for a gene therapy clinical trial must be approved by the NIH’s Recombinant DNA Advisory Committee prior to any clinical trial beginning; this is different from any other kind of clinical trial.[170]

As with other kinds of drugs, the FDA regulates the quality and safety of gene therapy products and supervises how these products are used clinically. Therapeutic alteration of the human genome falls under the same regulatory requirements as any other medical treatment. Research involving human subjects, such as clinical trials, must be reviewed and approved by the FDA and an Institutional Review Board.[172][173]

Gene therapy is the basis for the plotline of the film I Am Legend[174] and the TV show Will Gene Therapy Change the Human Race?.[175] In 1994, gene therapy was a plot element in “The Erlenmeyer Flask”, the first season finale of The X-Files; it is also used in Stargate as a means of allowing humans to use Ancient technology.[176][177]

See the rest here:

Gene therapy – Wikipedia

Gene Therapy in Muscular Dystrophy – Muscular Dystrophy News

Gene therapy, the use of genetic material to treat a disease or disorder, is making strides in muscular dystrophy. Although the approach is still considered experimental, studies in animal models have shown promising results and clinical trials in humans are underway.

Gene therapy has the potential to help people with inherited disorders, in which a gene mutation causes cells to produce a defective protein or no protein at all, leading to disease symptoms.

To deliver the genetic material to the cells, scientists use a tool called a vector. This is typically a virus that has been modified so that it doesnt cause disease. It is hoped that the vector will carry the therapeutic gene into the cells nucleus, where it will provide the instructions necessary to make the desired protein.

The most common form of muscular dystrophy, Duchenne muscular dystrophy, is caused by a mutation in the DMD gene, which codes for a protein called dystrophin. Dystrophin is part of a protein complex that strengthens and protects muscle fibers. When the cells dont have functional dystrophin due to the gene mutation, muscles progressively weaken. Scientists think that supplying a gene that codes for a functional form of dystrophin might be an effective treatment for Duchenne muscular dystrophy.

Using gene therapy to deliver a correct form of the dystrophin gene has been challenging because of the size of the DMD gene, which is the largest gene in the human genome so it does not fit into commonly used vectors.

Scientists are having more success with a shortened version of the DMD gene that produces a protein called micro-dystrophin. Even though its a smaller version of dystrophin, micro-dystrophin includes key elements of the protein and is functional.

Administering a gene for micro-dystrophin to golden retriever dogs that naturally develop muscular dystrophy showed promising results in a study published in July 2017. Muscular dystrophy symptoms were reduced for more than two years following the treatment and the dogs muscle strength improved. The gene was delivered using a recombinant adeno-associated virus, or rAAV, as the vector.

A similar therapy is now being tested in people in a Phase 1/2 clinical trial (NCT03375164)at Nationwide Childrens Hospital in Columbus, Ohio. A single dose of the gene therapytreatment containing the gene encoding for micro-dystrophinwill be infused into the blood system of 12 patients in two age groups: 3 months to 3 years, and 4 to 7 years. The first patient in the trial, which is recruiting participants, already has received the treatment, according to a January 2018 press release.

The biopharmaceutical company Sarepta Therapeutics is contributing funding and other support to the project.

Sarepta is developing another potential gene therapy for Duchenne muscular dystrophy where rather than targeting the DMD gene that codes for dystrophin, the therapy will be used to try to increase the expression of a gene called GALGT2. The overproduction of this gene is thought to produce changes in muscle cell proteins that strengthen them and protect them from damage, even in the absence of functional dystrophin.

A Phase 1/2a clinical trial (NCT03333590) was launched in November 2017 at Nationwide Childrens Hospital for the therapy, called rAAVrh74.MCK.GALGT2.

***

Muscular Dystrophy Newsis strictly a news and information website about the disease. It does not provide medical advice, diagnosis, or treatment. This content is not intended to be a substitute for professional medical advice, diagnosis, or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website.

See the original post here:

Gene Therapy in Muscular Dystrophy – Muscular Dystrophy News

What is Gene Therapy? | Pfizer: One of the world’s premier …

Gene therapy is a technology aimed at correcting or fixing a gene that may be defective. This exciting and potentially transformative area of research is focused on the development of potential treatments for monogenic diseases, or diseases that are caused by a defect in one gene.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

Viral vectors can be developed using adeno-associated virus (AAV), a naturally occurring virus which has been adapted for gene therapy use. Its ability to deliver genetic material to a wide range of tissues makes AAV vectors useful for transferring therapeutic genes into target cells. Gene therapy research holds tremendous promise in leading to the possible development of highly-specialized, potentially one-time delivery treatments for patients suffering from rare, monogenic diseases.

Pfizer aims to build an industry-leading gene therapy platform with a strategy focused on establishing a transformational portfolio through in-house capabilities, and enhancing those capabilities through strategic collaborations, as well as potential licensing and M&A activities.

We’re working to access the most effective vector designs available to build a robust clinical stage portfolio, and employing a scalable manufacturing approach, proprietary cell lines and sophisticated analytics to support clinical development.

In addition, we’re collaborating with some of the foremost experts in this field, through collaborations with Spark Therapeutics, Inc., on a potentially transformative gene therapy treatment for hemophilia B, which received Breakthrough Therapy designation from the US Food and Drug Administration, and 4D Molecular Therapeutics to discover and develop targeted next-generation AAV vectors for cardiac disease.

Gene therapy holds the promise of bringing true disease modification for patients suffering from devastating diseases, a promise were working to seeing become a reality in the years to come.

Read more:

What is Gene Therapy? | Pfizer: One of the world’s premier …

Gene Therapy Net – News, Conferences, Vectors, Literature …

Posted on: 28 November 2018, source: fortune.comResearchers in China (Clinical project ‘Safety and validity evaluation of HIV immune gene CCR5 gene editing in human embryos’) used genetic engineering tools (CRISPR) to create twins theoretically immune to HIV, smallpox, and cholera, MIT Technology Review reported. The medical breakthrough is controversial, as many worry about eugenics and designer babies for the wealthy. The twins, named Lulu and Nana, according to lead scientist He Jiankui of Shenzhen in a YouTube video, were the result of in vitro fertilization (IVF). A few weeks old, they appear to be healthy. When they were a single cell, genetic surgery using a popular tool, CRISPR, removed the doorway through which HIV enters to infect people.

Watch the presentation of He Jiankui and discussion during Second International Summit on Human Genome Editing in Hongkong, Wednesday November 28th, 2018.

See the rest here:

Gene Therapy Net – News, Conferences, Vectors, Literature …

Gene Therapy – Sickle Cell Anemia News

Gene therapy is an experimental technique that aims to treat genetic diseases by altering a disease-causing gene or introducing a healthy copy of a mutated gene to the body. The U.S. Food and Drug Administrationapprovedthe first gene therapy for an inherited disease a genetic form of blindness in December 2017.

Sickle cell anemia is caused by a mutation in the HBB gene which provides the instructions to make part of hemoglobin, the protein in red blood cells that carries oxygen.

Researchers are working on two different strategies to treat sickle cell anemia with gene therapy. Both of these strategies involve genetically altering the patients own hematopoietic stem cells. These are cells in the bone marrow that divide and specialize to produce different types of blood cells, including the red blood cells.

One strategy is to remove some of the patients hematopoietic stem cells, replace the mutated HBB gene in these cells with a healthy copy of the gene, and then transplant those cells back into the patient. The healthy copy of the gene is delivered to the cells using a modified, harmless virus. These genetically corrected cells will then hopefully repopulate the bone marrow and produce healthy, rather than sickled, red blood cells.

The other strategy is to genetically alter another gene in the patients hematopoietic stem cells so they boost production of fetal hemoglobin a form of hemoglobin produced by babies from about seven months before birth to about six months after birth. This type of hemoglobin represses sickling of cells in patients with sickle cell anemia, but most people only produce a tiny amount of it after infancy. Researchers aim to increase production of fetal hemoglobin in stem cells by using a highly specific enzyme to cut the cells DNA in the section containing one of the genes that suppress production of fetal hemoglobin. When the cell repairs its DNA, the gene no longer works and more fetal hemoglobin is produced.

Gene therapy offers an advantage over bone marrow transplant, in that complications associated with a bone marrow donation now the only cure for the disease such as finding the right match are not a concern.

Twelve clinical trials studying gene therapy to treat sickle cell anemia are now ongoing. Nine of the 12 are currently recruiting participants.

Four trials (NCT02186418, NCT03282656, NCT02247843, NCT02140554) are testing the efficacy and safety of gene therapy to replace the mutated HBB gene with a healthy HBB gene. These Phase 2 trials are recruiting both children and adults in the United States and Jamaica.

Three trials (NCT02193191, NCT02989701, NCT03226691) are investigating the use ofMozobil (plerixafor) in patients with sickle cell anemia to increase the production of stem cells to be used for gene therapy. This medication is already approved to treat certain types of cancer. All three are recruiting U.S. participants.

One trial (NCT00669305) is recruiting sickle cell anemia patients in Tennessee to donate bone marrow to be used in laboratory research to develop gene therapy techniques.

The final study(NCT00012545) is examining the best way to collect, process and store umbilical cord blood from babies with and without sickle cell anemia. Cord blood contains abundant stem cells that could be used in developing gene therapy for sickle cell anemia. This trial is open to pregnant women in Maryland both those who risk having an infant with sickle cell anemia, and those who do not.

One clinical trial (NCT02151526) conducted in France is still active but no longer recruiting participants. It is investigating the efficacy of gene therapy in seven patients. For the trial, a gene producing a therapeutic hemoglobin that functions similarly to fetal hemoglobin is introduced into the patients stem cells. A case studyfrom one of the seven was published in March 2017; it showed that the approach was safe and could be an effective treatment option for sickle cell anemia.

***

Sickle Cell Anemia News is strictly a news and information website about the disease. It does not provide medical advice, diagnosis or treatment. This content is not intended to be a substitute for professional medical advice, diagnosis or treatment. Always seek the advice of your physician or other qualified health provider with any questions you may have regarding a medical condition. Never disregard professional medical advice or delay in seeking it because of something you have read on this website.

Read this article:

Gene Therapy – Sickle Cell Anemia News

Gene Therapy Basics | Education | ASGCT American Society …

Gene therapy has been studied for more than 40 years and can help stop or slow the effects of disease on the most basic level of the human bodyour genes. And to understand how it works, well start at the basics.

Genes are made up of DNA, which are blueprints to build enzymes and proteins that make our body work. As far as we know, humans have between 20,000 and 25,000 genes. We typically get two copies of each gene from our parents. They influence everything from the color of our hair to our immune system, but genes arent always built correctly. A small adjustment to them can change how our proteins work, which then alter the way we breathe, walk or even digest food. Genes can change as they go through inherited mutations, as they age, or by being altered or damaged by chemicals and radiation.

In the case that a gene changesalso known as mutatingin a way that causes disease, gene therapy may be able to help. Gene therapy is the introduction, removal or change in genetic materialspecifically DNA or RNAinto the cells of a patient to treat a specific disease. The transferred genetic material changes how a proteinor group of proteinsis produced by the cell.

This new genetic material or working gene is delivered into the cell by using a vector. Typically, viruses are used as vectors because they have evolved to be very good at sneaking into and infecting cells. But in this case, their motive is to insert the new genes into the cell. Some types of viruses being used are typically not known to cause disease and other times the viral genes known to cause disease are removed. Regardless of the type, all viral vectors are tested many times for safety prior to being used. The vector can either be delivered outside the body (ex-vivo treatment) or the vectors can be injected into the body (in-vivo treatment).

Other types of drugs are typically used to manage disease or infection symptoms to relieve pain, while gene therapy targets the cause of the disease. It is not provided in the form of a pill, inhalation or surgery, it is provided through an injection or IV.

What Counts as a Rare Disease?

Gene therapy treats diseases in patients that are rare and often life threatening. Rare is defined as any disease or disorder affecting fewer than 200,000 people in the U.S. by the National Institutes of Health. As of now, there are around 7,000 rare diseases, affecting a total of approximately one in ten people. Many of these rare diseases are caused by a simple genetic mutation inherited from one or both parents.

Show Answer

Which Diseases Have Gene Therapies?

Of gene therapies up for approval over the next five years, 45 percent are anticipated to focus on cancer treatments and 38 percent are expected to treat rare inherited genetic disorders. Gene therapy can help add to or change non-functioning genescreating a great opportunity to assist with rare inherited disorders, which are passed along from parents. The mutation might be present on one or both chromosomes passed along to the children. The majority of gene therapies are currently being studied in clinical trials.

Some of these inherited diseases include (but are not limited to):

Show Answer

Why Do We Use Viral Vectors?

As you know from cold and flu season, viruses are quite skilled in the art of invading our bodiesadding their genetic material into our cells. However, researchers have learned to harness this sneaky ability to our advantage. Viruses are often used as a vehicle to deliver good genes into our cells, as opposed to the ones that cause disease.

Viruses are sometimes modified into vectors as researchers remove disease-causing material and add the correct genetic material. In gene therapy, researchers often use adeno-associated viruses (AAV) as vectors. AAV is a small virus that isnt typically known to cause disease in the first place, significantly reducing a chance of a negative reaction.

Show Answer

See the original post:

Gene Therapy Basics | Education | ASGCT American Society …

Just 19 Percent of Americans Trust Self-Driving Cars With Kids

A new survey by AAA shows that most Americans distrust self-driving cars. In the past two years, public trust in the emerging technology has gone down.

Poor Turnout

While tech companies like Waymo, Uber, and Tesla race to be the first to build a fully-autonomous vehicle, the public is left eating their dust.

About 71 percent of Americans say that they don’t trust self-driving cars, according to a new American Automobile Association (AAA) survey. That’s roughly the same percentage as last year’s survey, but it’s eight points higher than in 2017, according to Bloomberg and just 19 percent say they’d put their children or family members into an autonomous vehicle.

Overall, the data is a striking sign of public fatigue with self-driving cars.

Track Record

Autonomous vehicles, unlike some other emerging technologies, have suffered very public setbacks, including when an Uber vehicle struck and killed a pedestrian a year ago.

“It’s possible that the sustained level of fear is rooted in a heightened focus, whether good or bad, on incidents involving these types of vehicles,” said AAA director of automotive engineering Greg Brannon in a statement obtained by Bloomberg. “Also it could simply be due to a fear of the unknown.”

Uphill Battle

The AAA survey found that Americans are more accepting of autonomous vehicle tech in limited-use cases. For example, 53 percent of survey respondents were okay with self-driving trams or shuttles being used in areas like theme parks, while 44 percent accepted the idea of autonomous food-delivery bots.

Self-driving car companies are currently engaging in public relations efforts to earn people’s trust, Bloomberg reports. But if these AAA numbers are any indication, there’s a long way to go.

READ MORE: Americans Still Fear Self-Driving Cars [Bloomberg]

More on autonomous vehicles: Exclusive: A Waymo One Rider’s Experiences Highlight Autonomous Rideshare’s Shortcomings

The post Just 19 Percent of Americans Trust Self-Driving Cars With Kids appeared first on Futurism.

Read more from the original source:

Just 19 Percent of Americans Trust Self-Driving Cars With Kids

Elon Musk: $47,000 Model Y SUV “Will Ride Like a Sports Car”

A Familiar Car

First, it was supposed to feature Model-X-style “falcon wing” doors, and then it didn’t. It was supposed to be built in the Shanghai factory, but that didn’t work out either.

Tesla finally unveiled its fifth production car, the Model Y, at its design studio outside of Los Angeles Thursday evening.

“It has the functionality of an SUV, but it will ride like a sports car,” Tesla CEO Elon Musk said during the event. “So this thing will be really tight on corners.”

Bigger than the 3, Smaller Than the X

Yes, acceleration is still zippy: zero to 60 in 3.5 seconds.

But the vehicle is less than revolutionary. It’s arguably the company’s second crossover sports utility vehicle, after the Model X, and it borrows heavily from the company’s successful Model 3. In fact, 75 percent of its parts are the same, according to CEO Elon Musk.

The back of the Y is slightly elevated in the back for a roomier cargo space. A long-range model will feature seven seats — just like the Model X, despite being slightly smaller. Range: still 300 miles with the Long Range battery pack, thanks to its aerodynamic shape.

It will also be “feature complete” according to Musk, referring to the fact that the Model Y will one day be capable of “full self-driving” that he says “will be able to do basically anything just with software upgrades.”

10 Percent Cheaper

As expected, the Model Y is ten percent bigger and costs roughly ten percent more than the Model 3: the first Model Y — the Long Range model — will be released in the fall of 2020 and will sell for $47,000. A dual-motor all-wheel drive version and a performance version will sell for $51,000 and $60,000, respectively.

If you want to save a buck and get the ten-percent-cheaper-than-the-Model-3 version, you’ll have to wait: a Standard Range (230 miles) model will go on sale in 2021 for just $39,000.

Overall, the Model Y seems like a compromise: it’s not a radical shift, but it seems carefully designed to land with a certain type of consumer — and, if Musk is to be believed, without sacrificing Tesla’s carefully-cultivated “cool factor.”

Investors seemed slightly underwhelmed, too — the company’s stock reportedly slid up to five percent after the announcement.

READ MORE:  Tesla unveils Model Y electric SUV with 300 miles range and 7-seats [Electrek]

More on the Model Y: Elon Musk: Tesla Will Unveil Model Y Next Week

The post Elon Musk: $47,000 Model Y SUV “Will Ride Like a Sports Car” appeared first on Futurism.

The rest is here:

Elon Musk: $47,000 Model Y SUV “Will Ride Like a Sports Car”

How Can We Build Cities to Accommodate 6.5 Billion People?

By 2050, 6.5 billion people will choose to live in cities. These individuals will require employment and access to better healthcare from an infrastructure that is already extremely vulnerable. The Global Maker Challenge asked makers and innovators to help put forward solutions for this issue, and they delivered.

The post How Can We Build Cities to Accommodate 6.5 Billion People? appeared first on Futurism.

See the original post here:

How Can We Build Cities to Accommodate 6.5 Billion People?

Samsung Is Working on Phone With “Invisible” Camera Behind Screen

A Samsung exec has shared new details on the company's efforts to create a full-screen phone, one with the camera embedded beneath the display.

Punch It

Just last month, South Korean tech giant Samsung unveiled the Galaxy S10, a phone with just a single hole punched in the screen to accommodate its front-facing camera.

On Thursday, a Samsung exec shared new details on the company’s intentions to create a “perfect full-screen” phone, with an “invisible” camera behind the screen to eliminate the need for any visible holes or sensors — confirming that one of the biggest players in tech sees edge-to-edge screens as the future of mobile devices.

Hidden Tech

During a press briefing covered by Yonhap News Agency, Samsung’s Mobile Communication R&D Group Display Vice President Yang Byung-duk said the company’s goal is to create a phone with a screen that covers the entire front of the device — but consumers shouldn’t expect it in the immediate future.

“Though it wouldn’t be possible to make (a full-screen smartphone) in the next 1-2 years,” Yang said, “the technology can move forward to the point where the camera hole will be invisible, while not affecting the camera’s function in any way.”

Quest for Perfection

This isn’t Samsung’s first mention of an uninterrupted full-screen phone — as pointed out by The Verge, the company discussed its ambitions to put the front-facing camera under a future device’s screen during a presentation in October.

That presentation included a few additional details on how the camera in a full-screen phone would work.

Essentially, the entire screen would serve as a display whenever the front-facing camera wasn’t in use. When in use, however, the screen would become transparent, allowing the camera to see through so you could snap the perfect selfie — and based on Yang’s comments, that new innovation could be just a few years away.

READ MORE: Samsung Seeks Shift to Full Screen in New Smartphones [Yonhap News Agency]

More on Samsung: Samsung Just Revealed a $1,980 Folding Smartphone

The post Samsung Is Working on Phone With “Invisible” Camera Behind Screen appeared first on Futurism.

See more here:

Samsung Is Working on Phone With “Invisible” Camera Behind Screen

Special Announcement: Futurism Media and Singularity University

Futurism acquired by Singularity University

So, Readers –

As always, we’ve got some news about the future. Except this time, it’s about us.

We’re about to enter the next chapter of Futurism, one that will usher in a new era for this site. It’ll come with new ways we’ll be able to deliver on everything you’ve grown to read, watch, subscribe to, and love about what we do here. And also, more in volume of what we do, with larger ambitions, and ultimately, a higher level of quality with which we’re able to bring those ambitions to fruition.

As of today, Futurism Media is proud to announce that we’re joining operations with Singularity University. In other words: They bought us, they own us, and quite frankly, we’re excited about the deal.

It’s an excitement and an occasion we share in with you, our community of readers — aspiring and working technologists, scientists, engineers, academics, and fans, who carried us to where we are, who helped make this independent media company what it is today. We’ve always been humbled by your support, and we’ve worked to reciprocate it by publishing one of the most crucial independent technology and science digital digests, every day, full stop.

What this changes for you? Nothing. Really. Except: More of what you’ve come to count on Futurism.com to deliver every time you’ve read our stories, opened our emails, swiped up on our ‘Gram, watched our videos, dropped in on our events, clicked through a Byte, and so on. This partnership represents the sum total of the work you’ve engaged with, and the start of a new chapter in which we’ll be able to deliver on more of the above.

That means increased coverage of the emergent, cutting-edge innovation and scientific developments changing the world, and the key characters and narratives shaping them (or being shaped by them). It means an expanded, in-depth feature publishing program, arriving this Spring (it’s rad, and it’s gonna blow your socks off). It means more breaking news reporting and analysis. It means original media products you haven’t seen from us before — new verticals, microsites, other ways for you to get in the mix with our coverage. And yes, by working in concert with Singularity University, we’re going to have a pretty decent competitive advantage: Direct access to the characters and personas shaping our future, the people, ideas, and innovations right at the frontier of exponential growth technologies. Our branded content team, Futurism Creative, will also continue to produce guideline-abiding, cutting-edge, thoughtful and engaging content for our partners, and for the partners of SU, too. And finally, our Futurism Studios division will continue to push the envelope of feature-length narrative storytelling of the science fiction (and science fact) stories of that future.

Will this change our journalism? Not in the slightest. We’ll still be operating as an independent, objective news outlet, without interference from our partners, who will continue to hold us to the same ethics and accountability standards we’ve held ourselves to these last few years. There might be more appearances from the folks at SU in our work (not that SU’s proliferate network of notable alumni or board members haven’t previously made appearances around these parts prior to this), but by no means will SU be shoehorning themselves into what we do here.

Yet: Where the opportunity exists, we’ll absolutely seize on the chance to co-create and catalyze action together to shape the technology and science stories on the horizon, to say nothing of that future itself. We’ll continue to make quality the primary concern — and they’re here to support that mandate, and augment this team with additional resources to accomplish it. If even the appearance of a conflict presents itself, as always, we’ll default to disclosure. But it’d be absurd of us not to take advantage of the immense base of knowledge our new partners in Mountain View have on offer (an apt comparison here would be, say, Harvard Business Review to H.B.S. or M.I.T. and our contemporaries at the MIT Technology Review).

We’ve been circling this partnership for a while; they, fans of ours, and us, fans of theirs. The original mandate of Futurism as written by our C.E.O. Alex Klokus was to increase the rate of human adaptability towards the future through delivering on the news of where that future is headed. Singularity University concerns itself with educating the world on the exponential growth technologies changing our lives. It’s a perfect merging of interests. Where exponential growth technologies are concerned: One only need look as far as the way online advertising and social platforms changed the economics of media to see this. To find a home with a growing institution that will prove increasingly vital to the growing global community they’ve already established in spades is the best possible outcome. And no, we didn’t get crazy-rich or anything. But we did galvanize the future (and all its possibilities) for everyone at this company, and our ability to keep serving you, our readers.

We’re immensely proud of the scrappy, tight team here; and especially you, our community of readers and partners we’ve grown with these last few years. We’re proud of the product we’ve created, especially last year, when we steered away from reliance on social media platforms for an audience, and reconfigured an editorial strategy around the priority of driving you directly to Futurism.com daily, by prioritizing quality, topicality, reliability, and on-site presentation (shocker: it worked). Now, we proud to be able to do more, better, of what we’ve always done here:

Tell the stories of tomorrow, today. On behalf of the entire Brooklyn-based Futurism team, thanks for being along for the ride so far, and on behalf of the new Futurism x Singularity University family, here’s to more of where that came from.

The future, as ever, is looking bright. We can’t wait to tell you about it.

– Foster Kamer
Director of Content

James Del
Publisher

Sarah Marquart
Director of Strategic Operations

Geoff Clark
President of Futurism Studios

The post Special Announcement: Futurism Media and Singularity University appeared first on Futurism.

Excerpt from:

Special Announcement: Futurism Media and Singularity University

This Guy Spent a Whole Week In a VR Headset

Jak Wilmot, co-founder of Disrupt VR, an Atlanta-based VR content studio, spent 168 consecutive hours in a VR headset, locked up in his apartment.

The Dumbest Thing

Jak Wilmot, the co-founder of Atlanta-based VR content studioDisrupt VR, spent 168 consecutive hours in a VR headset — that’s a full week — pent up in his apartment.

“This is quite possibly the dumbest thing I’ve ever done, but welcome to a week in the future,” he said in a video about the experiment.

To make the experience even more futuristic, Wilmot livestreamed the entire week on Twitch late last month, later uploading a wrapup video on his entire week on YouTube.

The rules were simple: he could switch from a computer-based Oculus headset to a different, untethered headset for thirty seconds while his eyes were closed. His windows were blacked out, he said, so that his physical body didn’t have to rely on the daylight-dependent circadian rhythm.

His more mobile VR headset had a built in camera in the front, so that he was able to “see” his physical surroundings — but not directly with his own eyes.

“Everything is in the Headset”

Wilmot worked, ate and exercised inside virtual reality. Sleeping in the headset turned out to be “more comfortable” than Wilmot anticipated, though his eyes burned a bit.

“If one is feeling stressed, they can load into a natural environment for ten minutes and relax,” he said in the video. “If one is feeling energetic, they can dispel energy in a fitness game — these are like the new rules of the reality I’ve thrown myself in. Everything is in the headset.”

VR Connection

Wilmot believes that virtual reality is what you make it. If you want to be alone, you can spend time by yourself in a gaming session, slaying dragons in Skyrim VR. Or you can chose to join the cacophony of VRChat — a communal free-for-all multiplayer online platform that allows you to interact with avatars controlled by complete strangers.

“VR is stepping into the shoes of someone else, or stepping into a spaceship and talking to friends,” said Wilmot. “It’s very easy to find your tribe, to make friends, to communicate with others through a virtual landscape, where its no longer through digital window [like a monitor], but actually being there with them. To me that’s what VR is — connection.”

Escaping Virtual Reality

After seven days of living inside the headset, Wilmot took off the goggles and relearned what it’s like to live in the real world.

Experiment_01… ????????

Subject Status… ????? pic.twitter.com/HC0Jqb3aZq

— jak (@JakWilmot) February 27, 2019

Apart from slight dizziness and some disorientation, he came back to normal almost instantly.

One major advantage to not living inside a VR headset: “oh my gosh,” he said, “the graphics are so good.”

READ MORE: This Guy Is Spending A Full Week In VR, For Science [VR Scout]

More on virtual reality: Sex Researchers: For Many, Virtual Lovers Will Replace Humans

The post This Guy Spent a Whole Week In a VR Headset appeared first on Futurism.

See the article here:

This Guy Spent a Whole Week In a VR Headset

Slack Just Removed a Bunch of Hate Groups

Workplace messaging app Slack just announced that it banned 28 accounts that were known to be affiliated with hate groups.

Violating Terms

Slack, the team collaboration app commonly used to connect people within workplaces, announced Thursday that it had deleted 28 accounts that were clearly affiliated with hate groups, according to the company’s blog.

The announcement, sparse on concrete details or specifics, states that hate groups are explicitly unwelcome on the app and that Slack will continue to investigate and act on any future reports of hate speech or illegal activity.

“Today we removed 28 accounts because of their clear affiliation with known hate groups,” the statement reads. “The use of Slack by hate groups runs counter to everything we believe in at Slack and is not welcome on our platform.”

Joining the Fight

In recent years, major platforms like Facebook and Twitter have struggled to keep white supremacists and other hate groups from spreading their messages across the internet, though both ban Nazi messaging in Germany, where Holocaust denial is illegal.

Smaller scale platforms like Discord also recently started acting against hate groups, according to The Verge, which speculates that Slack’s focus on business communications instead of cultivating largescale communities may have helped the company avoid the issue of online hatemongering.

Real World Consequences

When hate speech is allowed to propagate online, it can lead to real-world violence — like the murder of Heather Heyer at a 2017 white supremacist rally. But banning hate groups and de-platforming the people behind them, as Slack claims to have done, is a successful strategy.

When right-wing activist Milo Yiannopolous was no longer permitted by online platforms to spread his racist and misogynistic viewpoints, he found himself effectively powerless and millions of dollars in debt, according to The Guardian.

“Using Slack to encourage or incite hatred and violence against groups or individuals because of who they are is antithetical to our values and the very purpose of Slack,” the company’s statement reads. “When we are made aware of an organization using Slack for illegal, harmful, or other prohibited purposes, we will investigate and take appropriate action and we are updating our terms of service to make that more explicit.”

READ MORE: Slack says it removed dozens of accounts affiliated with hate groups [The Verge]

More on content moderation: The UK Government Is Planning to Regulate Hate Speech Online

The post Slack Just Removed a Bunch of Hate Groups appeared first on Futurism.

Originally posted here:

Slack Just Removed a Bunch of Hate Groups

Presidential Hopeful Beto O’Rourke Belonged to Infamous Hacker Group

2020 Presidential hopeful Beto O'Rourke was reportedly part of the hacktivist group known as the Cult of the Dead Cow during his teenage years.

Political Hack

Presidential candidate Beto O’Rourke just admitted to spending his teenage years as part of the Cult of the Dead Cow (CDC), a group of hackers that first coined the term “hacktivism.”

O’Rourke, who failed to unseat Senator Ted Cruz in the 2018 midterm election and recently decided to run for president instead of challenging Senator John Cornyn in 2020, told Reuters that he credits the hacker group for helping develop his worldview — an intriguing admission for an unusual candidate who skateboards and used to play in a punk band.

Hacker-Lite

According to Reuters, there’s no evidence that O’Rourke actually engaged in any sort of serious hacking, though he did cop to stealing the long-distance phone service necessary for reaching the online message boards of the day.

Rather, O’Rourke seemed to spend his time in the Cult of the Dead Cow writing and sharing fiction with the community, such as a short story he wrote at age 15 about running over children in a car, Reuters reports.

“We weren’t deliberately looking for hacking chops,” CDC founder Kevin Wheeler told Reuters, describing the group’s attitude during the period of time O’Rourke was most active. “It was very much about personality and writing, really. For a long time, the ‘test,’ or evaluation, was to write [text files]. Everyone was expected to write things. If we were stoked to have more hacker-oriented people, it was because we’d be excited to have a broader range in our t-files.”

Formative Years

“There’s just this profound value in being able to be apart from the system and look at it critically and have fun while you’re doing it,” O’Rourke said. “I think of the Cult of the Dead Cow as a great example of that.”

The presidential hopeful, who espouses a mix of traditional liberal and libertarian views, describes the group as a sort of network for outcasts from society.

“When Dad bought an Apple IIe and a 300-baud modem and I started to get on boards, it was the Facebook of its day,” he said. “You just wanted to be part of a community.”

READ MORE: Beto O’Rourke’s secret membership in America’s oldest hacking group [Reuters]

More on hacktivism: It’s Now Scary to Be A White Hat Hacker Thanks to the US Government

The post Presidential Hopeful Beto O’Rourke Belonged to Infamous Hacker Group appeared first on Futurism.

Read this article:

Presidential Hopeful Beto O’Rourke Belonged to Infamous Hacker Group

Elon Musk: 2019 Will Be “the Year of the Solar Roof”

During the unveiling of Tesla's highly anticipated Model Y, CEO Elon Musk announced that the company would focus on its Solar Roof and Powerwall in 2019.

Looking Up

During the unveiling of Tesla’s highly anticipated Model Y Thursday night, CEO Elon Musk shared his vision for his company’s immediate future — and it had little to do with cars.

“This is definitely going to be the year of the Solar Roof and Powerwall,” he told the audience, according to Inverse — a sign that Tesla is shifting its focus from the road to the home, with the ultimate goal of creating a fully sustainable future.

Pretty Picture

In August 2017, Tesla gave the world its first glimpse of an installed Solar Roof, and it looked, well, a lot like any other roof. But that was the point — Tesla’s solar tiles didn’t have the jarring appearance of many home solar panels.

That aesthetically pleasing design — combined with the tiles’ affordability and “infinity warranty” — had solar energy expert Senthil Balasubramanian predicting Tesla would be a “game changer” for clean energy.

With the exception of the occasional massive battery project, though, we haven’t heard much about Tesla’s home energy products since then. The company spent much of 2017 and 2018 focused on getting through the Model 3’s “production hell” and dealing with the fallout from Musk’s latest public misstep.

Under One Roof

But now that Model 3 production is humming along, Tesla has the bandwidth to shift some of its engineering focus back to its Solar Roof and home batteries, according to Musk — and that should go a long way toward helping the company meet its ambitious goal of a more sustainable energy system.

“Solar plus battery plus electric vehicles, we have a fully sustainable future,” Musk told the audience Thursday. “That’s a future you can feel really excited and optimistic about. I think that really matters.”

READ MORE: Tesla Solar Roof: Elon Musk Declares 2019 Will Be the Year of the Roof [Inverse]

More on Tesla: Solar Expert Predicts Tesla Will Be a “Game-Changer” for Clean Energy

The post Elon Musk: 2019 Will Be “the Year of the Solar Roof” appeared first on Futurism.

Read the original:

Elon Musk: 2019 Will Be “the Year of the Solar Roof”

New Robot Hand Works Like a Venus Flytrap to Grip Objects

A team from MIT and Harvard has created a robot hand that's not only strong, but also soft — and it could usher in a new era in robotics.

Versatile Touch

If we want robots to take over more tasks for humans, we need to give them more versatile hands.

Right now, many robot hands can only complete specialized tasks. Ones that are strong often have trouble with tasks that require a delicate touch, and soft hands often don’t pack much of a punch when it comes to strength.

But now, a team of researchers from the Massachusetts Institute of Technology (MIT) and Harvard University have created a robot hand that’s not only strong, but also soft — and it could usher in a new era in robotics.

Show of Hands

The team drew inspiration for its hand from the origami magic ball. Rather than using some sort of finger-like grippers, their cone-shaped robot hand envelopes an object and then collapses around it, much like a Venus flytrap captures its prey.

The pressure applied is enough for the hand to lift objects up to 100 times its own weight, but it can also handle far more delicate, light objects. A video released by MIT demonstrates the hand’s ability to pick up everything from a soup can to a banana.

Soft, but Strong

University of California at Santa Cruz robotics professor Michael Wehner, who was not involved in the project, praised the hand, noting its novelty in an interview with MIT News.

“This is a very clever device that uses the power of 3-D printing, a vacuum, and soft robotics to approach the problem of grasping in a whole new way,” Wehner said. “In the coming years, I could imagine seeing soft robots gentle and dexterous enough to pick a rose, yet strong enough to safely lift a hospital patient.”

READ MORE: Robot hand is soft and strong [MIT News]

More on robot hands: This AI-Operated Robotic Hand Moves With “Unprecedented Dexterity”

The post New Robot Hand Works Like a Venus Flytrap to Grip Objects appeared first on Futurism.

View post:

New Robot Hand Works Like a Venus Flytrap to Grip Objects

States Are Approving Cannabis to Fight Opioid Addiction

Risky Maneuver

So far, two U.S. states, New York and Illinois, have legalized the use of cannabis to help treat chronic pain as an alternative to addictive opioids.

Ask anyone on the street, and they would probably tell you that cannabis helps people chill out. The chemical similarities between cannabis and opioids make it seem, anecdotally, like cannabis could help reduce opioid addiction. Both drugs mitigate similar symptoms and usher in similar experiences – but cannabis is far less dangerous on its own.

But anecdotal evidence only goes so far.

Mixed Bag

While it’s hard to criticize something that could help alleviate the opioid epidemic, the physiological impact of treating either chronic pain or opioid addiction with cannabis hasn’t undergone nearly the same rigor of scientific study as other medical treatments, according to Scientific American.

Overall, scientists have faced many challenges when it comes to experimenting with cannabis. Though Scientific American reports that some clinical research is finally starting to support it, overall, there’s just not a lot of evidence backing up that anecdotal hunch.

But because other opioid addiction treatments like methadone already work, and because cutting people off of them can be dangerous, scientists argued that switching people already taking prescription opioids over to a prescription of cannabis could actually be dangerous in a perspective letter recently published to the Journal of the American Medical Association.

Pain Factor

The big question is whether cannabis will not only be able to help people already addicted to opioids, but also the chronic pain that the opioids may have been for in the first place.

In this case, research is once more limited. Plenty of studies suggest that cannabis treats pain, but a research paper published in European Archives of Psychiatry and Clinical Neuroscience earlier this year found that most cannabis pain studies had severe limitations, calling their findings into question.

Legalizing marijuana could help people find all sorts of new treatments. And while exploring new tools to help treat people affected by the opioid epidemic is commendable, cannabis likely won’t end up being the answer.

READ MORE: Can Cannabis Solve the Opioid Crisis? [Scientific American]

More on cannabis: New Senate Bill Would Legalize Marijuana Nationwide

The post States Are Approving Cannabis to Fight Opioid Addiction appeared first on Futurism.

Originally posted here:

States Are Approving Cannabis to Fight Opioid Addiction

This Tech Could Secure Medical Implants Against Hackers

Many of today's medical implants communicate via Bluetooth, which makes them vulnerable to hacking, but a new system could change that.

Heart Hack

An implanted medical device can dramatically improve a person’s quality of life — or even save their life outright.

However, the devices come with serious security vulnerabilities, and it’s not hard to imagine the damage a person could do by hacking someone’s pacemaker, insulin pump, or brain implant.

Now, researchers from Purdue University have found a way to prevent hackers from intercepting the wireless signals used to communicate with implanted devices — and their creation could ensure the “internet of body” remains secure in the future.

Watch This

Many people monitor their implants via electronic devices, such as smart watches or smartphones, with the implants and devices communicating over Bluetooth.

Those wireless signals can extend as far as 10 meters away from a person’s body, according to the Purdue researchers – meaning someone in the vicinity of the implant owner could intercept the information — and perhaps manipulate it.

In a new paper published in the journal Scientific Reports, the researchers detail how they created a prototype watch that avoids this issue.

Short Leash

According to the researchers, their watch can receive a signal from anywhere on a person’s body, but instead of communicating over Bluetooth, the electrical signals travel through the person’s own body fluids to reach the watch, never extending more than one centimeter beyond the person’s skin.

As a bonus, the system also requires 100 times less energy than Bluetooth, according to the researchers — but its ability to protect incredibly sensitive communications could be reason enough for the technology to replace Bluetooth for implant applications in the future.

READ MORE: Your body is your internet – and now it can’t be hacked [Purdue University]

More on implants: New Brain Implant Could Translate Paralyzed People’s Thoughts Into Speech

The post This Tech Could Secure Medical Implants Against Hackers appeared first on Futurism.

Read the original post:

This Tech Could Secure Medical Implants Against Hackers

Here’s How Hackers Stole $15 Million From Mexican Banks

In April, bank hackers stole the equivalent of $20 million from Mexico's central bank thanks to a network rife with security flaws.

Ocean’s Once

In April 2018, hackers stole the equivalent of $15 million from Mexican banks — and now we know how they probably did it.

Penetration tester and security advisor Josu Loza was one of the experts called in to respond to the April heist, and on March 8 he presented his findings at the RSA Security conference in San Francisco.

Based on his analysis, Mexico’s central bank wasn’t doing nearly enough to protect its clients’ money — but other financial institutions could avoid the same fate if they’re willing to work together.

Easy Money

On Friday, Wired published a story detailing the information Loza shared with the audience at RSA’s conference. Based on his assessment, the success of the heist was due to a combination of expert bank hackers willing to spend months planning their crime and a banking network rife with security holes.

During the presentation, Loza made the case that the hackers might have accessed the Banco de México’s internal servers from the public internet, or perhaps launched phishing attacks on bank executives or employees to gain access.

Regardless of how they first got access, Loza said, the main problem was putting too many eggs in one security basket. Because many of the networks lacked adequate segmentation and access controls, he argued, a single breach could provide the bank hackers with extensive access.

That enabled them to lay the groundwork to eventually make numerous money transfers in smaller amounts, perhaps $5,000 or so, to accounts under their control. They’d then pay hundreds of “cash mules” each a small sum — Loza estimated that $260 might be enough — to withdraw the money for them.

Cyber Insecurity

The bank hackers are still at large, but the heist appears to have served as a wake-up call for the Banco de México.

“From last year to today the focus has been implementing controls. Control, control, control,” Lazo said during his presentation, according to Wired. “And I think the attacks aren’t happening today because of it.”

He also noted the need for companies to collaborate to defend against cyberattacks.

“Mexican people need to start to work together. All the institutions need to cooperate more,” Loza said. “The main problem on cybersecurity is that we don’t share knowledge and information or talk about attacks enough. People don’t want to make details about incidents public.”

READ MORE: HOW HACKERS PULLED OFF A $20 MILLION MEXICAN BANK HEIST [Wired]

More on hacking: Hacker Figures out How to Drain $1 Million in Cash From ATM

The post Here’s How Hackers Stole $15 Million From Mexican Banks appeared first on Futurism.

Visit link:

Here’s How Hackers Stole $15 Million From Mexican Banks

Computer Fraud Laws are Flawed, this Lawyer is Fighting Against Them

Tor Ekeland, hacker lawyer, fights back against the harsh punishments decreed using the Computer Fraud and Abuse Act. And one of those fights can be seen in “Trust Machine,” available now at Breaker.io.

The post Computer Fraud Laws are Flawed, this Lawyer is Fighting Against Them appeared first on Futurism.

Read more:

Computer Fraud Laws are Flawed, this Lawyer is Fighting Against Them


12345...102030...