12345...102030...


Gene therapy – Wikipedia

In the medicine field, gene therapy (also called human gene transfer) is the therapeutic delivery of nucleic acid into a patient’s cells as a drug to treat disease.[1][2] The first attempt at modifying human DNA was performed in 1980 by Martin Cline, but the first successful nuclear gene transfer in humans, approved by the National Institutes of Health, was performed in May 1989.[3] The first therapeutic use of gene transfer as well as the first direct insertion of human DNA into the nuclear genome was performed by French Anderson in a trial starting in September 1990.

Between 1989 and February 2016, over 2,300 clinical trials were conducted, with more than half of them in phase I.[4]

Not all medical procedures that introduce alterations to a patient’s genetic makeup can be considered gene therapy. Bone marrow transplantation and organ transplants in general have been found to introduce foreign DNA into patients.[5] Gene therapy is defined by the precision of the procedure and the intention of direct therapeutic effect.

Gene therapy was conceptualized in 1972, by authors who urged caution before commencing human gene therapy studies.

The first attempt, an unsuccessful one, at gene therapy (as well as the first case of medical transfer of foreign genes into humans not counting organ transplantation) was performed by Martin Cline on 10 July 1980.[6][7] Cline claimed that one of the genes in his patients was active six months later, though he never published this data or had it verified[8] and even if he is correct, it’s unlikely it produced any significant beneficial effects treating beta-thalassemia.

After extensive research on animals throughout the 1980s and a 1989 bacterial gene tagging trial on humans, the first gene therapy widely accepted as a success was demonstrated in a trial that started on 14 September 1990, when Ashi DeSilva was treated for ADA-SCID.[9]

The first somatic treatment that produced a permanent genetic change was performed in 1993.[citation needed]

Gene therapy is a way to fix a genetic problem at its source. The polymers are either translated into proteins, interfere with target gene expression, or possibly correct genetic mutations.

The most common form uses DNA that encodes a functional, therapeutic gene to replace a mutated gene. The polymer molecule is packaged within a “vector”, which carries the molecule inside cells.

Early clinical failures led to dismissals of gene therapy. Clinical successes since 2006 regained researchers’ attention, although as of 2014[update], it was still largely an experimental technique.[10] These include treatment of retinal diseases Leber’s congenital amaurosis[11][12][13][14] and choroideremia,[15] X-linked SCID,[16] ADA-SCID,[17][18] adrenoleukodystrophy,[19] chronic lymphocytic leukemia (CLL),[20] acute lymphocytic leukemia (ALL),[21] multiple myeloma,[22] haemophilia,[18] and Parkinson’s disease.[23] Between 2013 and April 2014, US companies invested over $600 million in the field.[24]

The first commercial gene therapy, Gendicine, was approved in China in 2003 for the treatment of certain cancers.[25] In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia.[26]In 2012 Glybera, a treatment for a rare inherited disorder, [1] became the first treatment to be approved for clinical use in either Europe or the United States after its endorsement by the European Commission.[10][27]

Following early advances in genetic engineering of bacteria, cells, and small animals, scientists started considering how to apply it to medicine. Two main approaches were considered replacing or disrupting defective genes.[28] Scientists focused on diseases caused by single-gene defects, such as cystic fibrosis, haemophilia, muscular dystrophy, thalassemia, and sickle cell anemia. Glybera treats one such disease, caused by a defect in lipoprotein lipase.[27]

DNA must be administered, reach the damaged cells, enter the cell and either express or disrupt a protein.[29] Multiple delivery techniques have been explored. The initial approach incorporated DNA into an engineered virus to deliver the DNA into a chromosome.[30][31] Naked DNA approaches have also been explored, especially in the context of vaccine development.[32]

Generally, efforts focused on administering a gene that causes a needed protein to be expressed. More recently, increased understanding of nuclease function has led to more direct DNA editing, using techniques such as zinc finger nucleases and CRISPR. The vector incorporates genes into chromosomes. The expressed nucleases then knock out and replace genes in the chromosome. As of 2014[update] these approaches involve removing cells from patients, editing a chromosome and returning the transformed cells to patients.[33]

Gene editing is a potential approach to alter the human genome to treat genetic diseases,[34] viral diseases,[35] and cancer.[36] As of 2016[update] these approaches were still years from being medicine.[37][38]

Gene therapy may be classified into two types:

In somatic cell gene therapy (SCGT), the therapeutic genes are transferred into any cell other than a gamete, germ cell, gametocyte, or undifferentiated stem cell. Any such modifications affect the individual patient only, and are not inherited by offspring. Somatic gene therapy represents mainstream basic and clinical research, in which therapeutic DNA (either integrated in the genome or as an external episome or plasmid) is used to treat disease.

Over 600 clinical trials utilizing SCGT are underway[when?] in the US. Most focus on severe genetic disorders, including immunodeficiencies, haemophilia, thalassaemia, and cystic fibrosis. Such single gene disorders are good candidates for somatic cell therapy. The complete correction of a genetic disorder or the replacement of multiple genes is not yet possible. Only a few of the trials are in the advanced stages.[39] [needs update]

In germline gene therapy (GGT), germ cells (sperm or egg cells) are modified by the introduction of functional genes into their genomes. Modifying a germ cell causes all the organism’s cells to contain the modified gene. The change is therefore heritable and passed on to later generations. Australia, Canada, Germany, Israel, Switzerland, and the Netherlands[40] prohibit GGT for application in human beings, for technical and ethical reasons, including insufficient knowledge about possible risks to future generations[40] and higher risks versus SCGT.[41] The US has no federal controls specifically addressing human genetic modification (beyond FDA regulations for therapies in general).[40][42][43][44]

The delivery of DNA into cells can be accomplished by multiple methods. The two major classes are recombinant viruses (sometimes called biological nanoparticles or viral vectors) and naked DNA or DNA complexes (non-viral methods).

In order to replicate, viruses introduce their genetic material into the host cell, tricking the host’s cellular machinery into using it as blueprints for viral proteins. Retroviruses go a stage further by having their genetic material copied into the genome of the host cell. Scientists exploit this by substituting a virus’s genetic material with therapeutic DNA. (The term ‘DNA’ may be an oversimplification, as some viruses contain RNA, and gene therapy could take this form as well.) A number of viruses have been used for human gene therapy, including retroviruses, adenoviruses, herpes simplex, vaccinia, and adeno-associated virus.[4] Like the genetic material (DNA or RNA) in viruses, therapeutic DNA can be designed to simply serve as a temporary blueprint that is degraded naturally or (at least theoretically) to enter the host’s genome, becoming a permanent part of the host’s DNA in infected cells.

Non-viral methods present certain advantages over viral methods, such as large scale production and low host immunogenicity. However, non-viral methods initially produced lower levels of transfection and gene expression, and thus lower therapeutic efficacy. Later technology remedied this deficiency.[citation needed]

Methods for non-viral gene therapy include the injection of naked DNA, electroporation, the gene gun, sonoporation, magnetofection, the use of oligonucleotides, lipoplexes, dendrimers, and inorganic nanoparticles.

Some of the unsolved problems include:

Three patients’ deaths have been reported in gene therapy trials, putting the field under close scrutiny. The first was that of Jesse Gelsinger, who died in 1999 because of immune rejection response.[51] One X-SCID patient died of leukemia in 2003.[9] In 2007, a rheumatoid arthritis patient died from an infection; the subsequent investigation concluded that the death was not related to gene therapy.[52]

In 1972 Friedmann and Roblin authored a paper in Science titled “Gene therapy for human genetic disease?”[53] Rogers (1970) was cited for proposing that exogenous good DNA be used to replace the defective DNA in those who suffer from genetic defects.[54]

In 1984 a retrovirus vector system was designed that could efficiently insert foreign genes into mammalian chromosomes.[55]

The first approved gene therapy clinical research in the US took place on 14 September 1990, at the National Institutes of Health (NIH), under the direction of William French Anderson.[56] Four-year-old Ashanti DeSilva received treatment for a genetic defect that left her with ADA-SCID, a severe immune system deficiency. The defective gene of the patient’s blood cells was replaced by the functional variant. Ashantis immune system was partially restored by the therapy. Production of the missing enzyme was temporarily stimulated, but the new cells with functional genes were not generated. She led a normal life only with the regular injections performed every two months. The effects were successful, but temporary.[57]

Cancer gene therapy was introduced in 1992/93 (Trojan et al. 1993).[58] The treatment of glioblastoma multiforme, the malignant brain tumor whose outcome is always fatal, was done using a vector expressing antisense IGF-I RNA (clinical trial approved by NIH protocolno.1602 November 24, 1993,[59] and by the FDA in 1994). This therapy also represents the beginning of cancer immunogene therapy, a treatment which proves to be effective due to the anti-tumor mechanism of IGF-I antisense, which is related to strong immune and apoptotic phenomena.

In 1992 Claudio Bordignon, working at the Vita-Salute San Raffaele University, performed the first gene therapy procedure using hematopoietic stem cells as vectors to deliver genes intended to correct hereditary diseases.[60] In 2002 this work led to the publication of the first successful gene therapy treatment for adenosine deaminase deficiency (ADA-SCID). The success of a multi-center trial for treating children with SCID (severe combined immune deficiency or “bubble boy” disease) from 2000 and 2002, was questioned when two of the ten children treated at the trial’s Paris center developed a leukemia-like condition. Clinical trials were halted temporarily in 2002, but resumed after regulatory review of the protocol in the US, the United Kingdom, France, Italy, and Germany.[61]

In 1993 Andrew Gobea was born with SCID following prenatal genetic screening. Blood was removed from his mother’s placenta and umbilical cord immediately after birth, to acquire stem cells. The allele that codes for adenosine deaminase (ADA) was obtained and inserted into a retrovirus. Retroviruses and stem cells were mixed, after which the viruses inserted the gene into the stem cell chromosomes. Stem cells containing the working ADA gene were injected into Andrew’s blood. Injections of the ADA enzyme were also given weekly. For four years T cells (white blood cells), produced by stem cells, made ADA enzymes using the ADA gene. After four years more treatment was needed.[62]

Jesse Gelsinger’s death in 1999 impeded gene therapy research in the US.[63][64] As a result, the FDA suspended several clinical trials pending the reevaluation of ethical and procedural practices.[65]

The modified cancer gene therapy strategy of antisense IGF-I RNA (NIH n 1602)[59] using antisense / triple helix anti-IGF-I approach was registered in 2002 by Wiley gene therapy clinical trial – n 635 and 636. The approach has shown promising results in the treatment of six different malignant tumors: glioblastoma, cancers of liver, colon, prostate, uterus, and ovary (Collaborative NATO Science Programme on Gene Therapy USA, France, Poland n LST 980517 conducted by J. Trojan) (Trojan et al., 2012). This anti-gene antisense/triple helix therapy has proven to be efficient, due to the mechanism stopping simultaneously IGF-I expression on translation and transcription levels, strengthening anti-tumor immune and apoptotic phenomena.

Sickle-cell disease can be treated in mice.[66] The mice which have essentially the same defect that causes human cases used a viral vector to induce production of fetal hemoglobin (HbF), which normally ceases to be produced shortly after birth. In humans, the use of hydroxyurea to stimulate the production of HbF temporarily alleviates sickle cell symptoms. The researchers demonstrated this treatment to be a more permanent means to increase therapeutic HbF production.[67]

A new gene therapy approach repaired errors in messenger RNA derived from defective genes. This technique has the potential to treat thalassaemia, cystic fibrosis and some cancers.[68]

Researchers created liposomes 25 nanometers across that can carry therapeutic DNA through pores in the nuclear membrane.[69]

In 2003 a research team inserted genes into the brain for the first time. They used liposomes coated in a polymer called polyethylene glycol, which unlike viral vectors, are small enough to cross the bloodbrain barrier.[70]

Short pieces of double-stranded RNA (short, interfering RNAs or siRNAs) are used by cells to degrade RNA of a particular sequence. If a siRNA is designed to match the RNA copied from a faulty gene, then the abnormal protein product of that gene will not be produced.[71]

Gendicine is a cancer gene therapy that delivers the tumor suppressor gene p53 using an engineered adenovirus. In 2003, it was approved in China for the treatment of head and neck squamous cell carcinoma.[25]

In March researchers announced the successful use of gene therapy to treat two adult patients for X-linked chronic granulomatous disease, a disease which affects myeloid cells and damages the immune system. The study is the first to show that gene therapy can treat the myeloid system.[72]

In May a team reported a way to prevent the immune system from rejecting a newly delivered gene.[73] Similar to organ transplantation, gene therapy has been plagued by this problem. The immune system normally recognizes the new gene as foreign and rejects the cells carrying it. The research utilized a newly uncovered network of genes regulated by molecules known as microRNAs. This natural function selectively obscured their therapeutic gene in immune system cells and protected it from discovery. Mice infected with the gene containing an immune-cell microRNA target sequence did not reject the gene.

In August scientists successfully treated metastatic melanoma in two patients using killer T cells genetically retargeted to attack the cancer cells.[74]

In November researchers reported on the use of VRX496, a gene-based immunotherapy for the treatment of HIV that uses a lentiviral vector to deliver an antisense gene against the HIV envelope. In a phase I clinical trial, five subjects with chronic HIV infection who had failed to respond to at least two antiretroviral regimens were treated. A single intravenous infusion of autologous CD4 T cells genetically modified with VRX496 was well tolerated. All patients had stable or decreased viral load; four of the five patients had stable or increased CD4 T cell counts. All five patients had stable or increased immune response to HIV antigens and other pathogens. This was the first evaluation of a lentiviral vector administered in a US human clinical trial.[75][76]

In May researchers announced the first gene therapy trial for inherited retinal disease. The first operation was carried out on a 23-year-old British male, Robert Johnson, in early 2007.[77]

Leber’s congenital amaurosis is an inherited blinding disease caused by mutations in the RPE65 gene. The results of a small clinical trial in children were published in April.[11] Delivery of recombinant adeno-associated virus (AAV) carrying RPE65 yielded positive results. In May two more groups reported positive results in independent clinical trials using gene therapy to treat the condition. In all three clinical trials, patients recovered functional vision without apparent side-effects.[11][12][13][14]

In September researchers were able to give trichromatic vision to squirrel monkeys.[78] In November 2009, researchers halted a fatal genetic disorder called adrenoleukodystrophy in two children using a lentivirus vector to deliver a functioning version of ABCD1, the gene that is mutated in the disorder.[79]

An April paper reported that gene therapy addressed achromatopsia (color blindness) in dogs by targeting cone photoreceptors. Cone function and day vision were restored for at least 33 months in two young specimens. The therapy was less efficient for older dogs.[80]

In September it was announced that an 18-year-old male patient in France with beta-thalassemia major had been successfully treated.[81] Beta-thalassemia major is an inherited blood disease in which beta haemoglobin is missing and patients are dependent on regular lifelong blood transfusions.[82] The technique used a lentiviral vector to transduce the human -globin gene into purified blood and marrow cells obtained from the patient in June 2007.[83] The patient’s haemoglobin levels were stable at 9 to 10 g/dL. About a third of the hemoglobin contained the form introduced by the viral vector and blood transfusions were not needed.[83][84] Further clinical trials were planned.[85] Bone marrow transplants are the only cure for thalassemia, but 75% of patients do not find a matching donor.[84]

Cancer immunogene therapy using modified antigene, antisense/triple helix approach was introduced in South America in 2010/11 in La Sabana University, Bogota (Ethical Committee 14 December 2010, no P-004-10). Considering the ethical aspect of gene diagnostic and gene therapy targeting IGF-I, the IGF-I expressing tumors i.e. lung and epidermis cancers were treated (Trojan et al. 2016).[86][87]

In 2007 and 2008, a man (Timothy Ray Brown) was cured of HIV by repeated hematopoietic stem cell transplantation (see also allogeneic stem cell transplantation, allogeneic bone marrow transplantation, allotransplantation) with double-delta-32 mutation which disables the CCR5 receptor. This cure was accepted by the medical community in 2011.[88] It required complete ablation of existing bone marrow, which is very debilitating.

In August two of three subjects of a pilot study were confirmed to have been cured from chronic lymphocytic leukemia (CLL). The therapy used genetically modified T cells to attack cells that expressed the CD19 protein to fight the disease.[20] In 2013, the researchers announced that 26 of 59 patients had achieved complete remission and the original patient had remained tumor-free.[89]

Human HGF plasmid DNA therapy of cardiomyocytes is being examined as a potential treatment for coronary artery disease as well as treatment for the damage that occurs to the heart after myocardial infarction.[90][91]

In 2011 Neovasculgen was registered in Russia as the first-in-class gene-therapy drug for treatment of peripheral artery disease, including critical limb ischemia; it delivers the gene encoding for VEGF.[92][26] Neovasculogen is a plasmid encoding the CMV promoter and the 165 amino acid form of VEGF.[93][94]

The FDA approved Phase 1 clinical trials on thalassemia major patients in the US for 10 participants in July.[95] The study was expected to continue until 2015.[85]

In July 2012, the European Medicines Agency recommended approval of a gene therapy treatment for the first time in either Europe or the United States. The treatment used Alipogene tiparvovec (Glybera) to compensate for lipoprotein lipase deficiency, which can cause severe pancreatitis.[96] The recommendation was endorsed by the European Commission in November 2012[10][27][97][98] and commercial rollout began in late 2014.[99] Alipogene tiparvovec was expected to cost around $1.6 million per treatment in 2012,[100] revised to $1 million in 2015,[101] making it the most expensive medicine in the world at the time.[102] As of 2016[update], only the patients treated in clinical trials and a patient who paid the full price for treatment have received the drug.[103]

In December 2012, it was reported that 10 of 13 patients with multiple myeloma were in remission “or very close to it” three months after being injected with a treatment involving genetically engineered T cells to target proteins NY-ESO-1 and LAGE-1, which exist only on cancerous myeloma cells.[22]

In March researchers reported that three of five adult subjects who had acute lymphocytic leukemia (ALL) had been in remission for five months to two years after being treated with genetically modified T cells which attacked cells with CD19 genes on their surface, i.e. all B-cells, cancerous or not. The researchers believed that the patients’ immune systems would make normal T-cells and B-cells after a couple of months. They were also given bone marrow. One patient relapsed and died and one died of a blood clot unrelated to the disease.[21]

Following encouraging Phase 1 trials, in April, researchers announced they were starting Phase 2 clinical trials (called CUPID2 and SERCA-LVAD) on 250 patients[104] at several hospitals to combat heart disease. The therapy was designed to increase the levels of SERCA2, a protein in heart muscles, improving muscle function.[105] The FDA granted this a Breakthrough Therapy Designation to accelerate the trial and approval process.[106] In 2016 it was reported that no improvement was found from the CUPID 2 trial.[107]

In July researchers reported promising results for six children with two severe hereditary diseases had been treated with a partially deactivated lentivirus to replace a faulty gene and after 732 months. Three of the children had metachromatic leukodystrophy, which causes children to lose cognitive and motor skills.[108] The other children had Wiskott-Aldrich syndrome, which leaves them to open to infection, autoimmune diseases, and cancer.[109] Follow up trials with gene therapy on another six children with Wiskott-Aldrich syndrome were also reported as promising.[110][111]

In October researchers reported that two children born with adenosine deaminase severe combined immunodeficiency disease (ADA-SCID) had been treated with genetically engineered stem cells 18 months previously and that their immune systems were showing signs of full recovery. Another three children were making progress.[18] In 2014 a further 18 children with ADA-SCID were cured by gene therapy.[112] ADA-SCID children have no functioning immune system and are sometimes known as “bubble children.”[18]

Also in October researchers reported that they had treated six hemophilia sufferers in early 2011 using an adeno-associated virus. Over two years later all six were producing clotting factor.[18][113]

In January researchers reported that six choroideremia patients had been treated with adeno-associated virus with a copy of REP1. Over a six-month to two-year period all had improved their sight.[114][115] By 2016, 32 patients had been treated with positive results and researchers were hopeful the treatment would be long-lasting.[15] Choroideremia is an inherited genetic eye disease with no approved treatment, leading to loss of sight.

In March researchers reported that 12 HIV patients had been treated since 2009 in a trial with a genetically engineered virus with a rare mutation (CCR5 deficiency) known to protect against HIV with promising results.[116][117]

Clinical trials of gene therapy for sickle cell disease were started in 2014.[118][119] There is a need for high quality randomised controlled trials assessing the risks and benefits involved with gene therapy for people with sickle cell disease.[120][needs update]

In February LentiGlobin BB305, a gene therapy treatment undergoing clinical trials for treatment of beta thalassemia gained FDA “breakthrough” status after several patients were able to forgo the frequent blood transfusions usually required to treat the disease.[121]

In March researchers delivered a recombinant gene encoding a broadly neutralizing antibody into monkeys infected with simian HIV; the monkeys’ cells produced the antibody, which cleared them of HIV. The technique is named immunoprophylaxis by gene transfer (IGT). Animal tests for antibodies to ebola, malaria, influenza, and hepatitis were underway.[122][123]

In March, scientists, including an inventor of CRISPR, Jennifer Doudna, urged a worldwide moratorium on germline gene therapy, writing “scientists should avoid even attempting, in lax jurisdictions, germline genome modification for clinical application in humans” until the full implications “are discussed among scientific and governmental organizations”.[124][125][126][127]

In October, researchers announced that they had treated a baby girl, Layla Richards, with an experimental treatment using donor T-cells genetically engineered using TALEN to attack cancer cells. One year after the treatment she was still free of her cancer (a highly aggressive form of acute lymphoblastic leukaemia [ALL]).[128] Children with highly aggressive ALL normally have a very poor prognosis and Layla’s disease had been regarded as terminal before the treatment.[129]

In December, scientists of major world academies called for a moratorium on inheritable human genome edits, including those related to CRISPR-Cas9 technologies[130] but that basic research including embryo gene editing should continue.[131]

In April the Committee for Medicinal Products for Human Use of the European Medicines Agency endorsed a gene therapy treatment called Strimvelis[132][133] and the European Commission approved it in June.[134] This treats children born with adenosine deaminase deficiency and who have no functioning immune system. This was the second gene therapy treatment to be approved in Europe.[135]

In October, Chinese scientists reported they had started a trial to genetically modify T-cells from 10 adult patients with lung cancer and reinject the modified T-cells back into their bodies to attack the cancer cells. The T-cells had the PD-1 protein (which stops or slows the immune response) removed using CRISPR-Cas9.[136][137]

A 2016 Cochrane systematic review looking at data from four trials on topical cystic fibrosis transmembrane conductance regulator (CFTR) gene therapy does not support its clinical use as a mist inhaled into the lungs to treat cystic fibrosis patients with lung infections. One of the four trials did find weak evidence that liposome-based CFTR gene transfer therapy may lead to a small respiratory improvement for people with CF. This weak evidence is not enough to make a clinical recommendation for routine CFTR gene therapy.[138]

In February Kite Pharma announced results from a clinical trial of CAR-T cells in around a hundred people with advanced Non-Hodgkin lymphoma.[139]

In March, French scientists reported on clinical research of gene therapy to treat sickle-cell disease.[140]

In August, the FDA approved tisagenlecleucel for acute lymphoblastic leukemia.[141] Tisagenlecleucel is an adoptive cell transfer therapy for B-cell acute lymphoblastic leukemia; T cells from a person with cancer are removed, genetically engineered to make a specific T-cell receptor (a chimeric T cell receptor, or “CAR-T”) that reacts to the cancer, and are administered back to the person. The T cells are engineered to target a protein called CD19 that is common on B cells. This is the first form of gene therapy to be approved in the United States. In October, a similar therapy called axicabtagene ciloleucel was approved for non-Hodgkin lymphoma.[142]

In December the results of using an adeno-associated virus with blood clotting factor VIII to treat nine haemophilia A patients were published. Six of the seven patients on the high dose regime increased the level of the blood clotting VIII to normal levels. The low and medium dose regimes had no effect on the patient’s blood clotting levels.[143][144]

In December, the FDA approved Luxturna, the first in vivo gene therapy, for the treatment of blindness due to Leber’s congenital amaurosis.[145] The price of this treatment was 850,000 US dollars for both eyes.[146][147]

Speculated uses for gene therapy include:

Athletes might adopt gene therapy technologies to improve their performance.[148] Gene doping is not known to occur, but multiple gene therapies may have such effects. Kayser et al. argue that gene doping could level the playing field if all athletes receive equal access. Critics claim that any therapeutic intervention for non-therapeutic/enhancement purposes compromises the ethical foundations of medicine and sports.[149]

Genetic engineering could be used to cure diseases, but also to change physical appearance, metabolism, and even improve physical capabilities and mental faculties such as memory and intelligence. Ethical claims about germline engineering include beliefs that every fetus has a right to remain genetically unmodified, that parents hold the right to genetically modify their offspring, and that every child has the right to be born free of preventable diseases.[150][151][152] For parents, genetic engineering could be seen as another child enhancement technique to add to diet, exercise, education, training, cosmetics, and plastic surgery.[153][154] Another theorist claims that moral concerns limit but do not prohibit germline engineering.[155]

Possible regulatory schemes include a complete ban, provision to everyone, or professional self-regulation. The American Medical Associations Council on Ethical and Judicial Affairs stated that “genetic interventions to enhance traits should be considered permissible only in severely restricted situations: (1) clear and meaningful benefits to the fetus or child; (2) no trade-off with other characteristics or traits; and (3) equal access to the genetic technology, irrespective of income or other socioeconomic characteristics.”[156]

As early in the history of biotechnology as 1990, there have been scientists opposed to attempts to modify the human germline using these new tools,[157] and such concerns have continued as technology progressed.[158][159] With the advent of new techniques like CRISPR, in March 2015 a group of scientists urged a worldwide moratorium on clinical use of gene editing technologies to edit the human genome in a way that can be inherited.[124][125][126][127] In April 2015, researchers sparked controversy when they reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[160][161] A committee of the American National Academy of Sciences and National Academy of Medicine gave qualified support to human genome editing in 2017[162][163] once answers have been found to safety and efficiency problems “but only for serious conditions under stringent oversight.”[164]

Regulations covering genetic modification are part of general guidelines about human-involved biomedical research. There are no international treaties which are legally binding in this area, but there are recommendations for national laws from various bodies.

The Helsinki Declaration (Ethical Principles for Medical Research Involving Human Subjects) was amended by the World Medical Association’s General Assembly in 2008. This document provides principles physicians and researchers must consider when involving humans as research subjects. The Statement on Gene Therapy Research initiated by the Human Genome Organization (HUGO) in 2001 provides a legal baseline for all countries. HUGOs document emphasizes human freedom and adherence to human rights, and offers recommendations for somatic gene therapy, including the importance of recognizing public concerns about such research.[165]

No federal legislation lays out protocols or restrictions about human genetic engineering. This subject is governed by overlapping regulations from local and federal agencies, including the Department of Health and Human Services, the FDA and NIH’s Recombinant DNA Advisory Committee. Researchers seeking federal funds for an investigational new drug application, (commonly the case for somatic human genetic engineering,) must obey international and federal guidelines for the protection of human subjects.[166]

NIH serves as the main gene therapy regulator for federally funded research. Privately funded research is advised to follow these regulations. NIH provides funding for research that develops or enhances genetic engineering techniques and to evaluate the ethics and quality in current research. The NIH maintains a mandatory registry of human genetic engineering research protocols that includes all federally funded projects.

An NIH advisory committee published a set of guidelines on gene manipulation.[167] The guidelines discuss lab safety as well as human test subjects and various experimental types that involve genetic changes. Several sections specifically pertain to human genetic engineering, including Section III-C-1. This section describes required review processes and other aspects when seeking approval to begin clinical research involving genetic transfer into a human patient.[168] The protocol for a gene therapy clinical trial must be approved by the NIH’s Recombinant DNA Advisory Committee prior to any clinical trial beginning; this is different from any other kind of clinical trial.[167]

As with other kinds of drugs, the FDA regulates the quality and safety of gene therapy products and supervises how these products are used clinically. Therapeutic alteration of the human genome falls under the same regulatory requirements as any other medical treatment. Research involving human subjects, such as clinical trials, must be reviewed and approved by the FDA and an Institutional Review Board.[169][170]

Gene therapy is the basis for the plotline of the film I Am Legend[171] and the TV show Will Gene Therapy Change the Human Race?.[172] In 1994, gene therapy was a plot element in “The Erlenmeyer Flask”, the first season finale of The X-Files; it is also used in Stargate as a means of allowing humans to use Ancient technology.[173][174]

More:

Gene therapy – Wikipedia

Gene Therapy Retrovirus Vectors Explained

A retrovirus is any virus belonging to the viral family Retroviridae. All The genetic material in retroviruses is in the form of RNA molecules, while the genetic material of their hosts is in the form of DNA. When a retrovirus infects a host cell, it will introduce its RNA together with some enzymes into the cell. This RNA molecule from the retrovirus must produce a DNA copy from its RNA molecule before it can be considered part of the genetic material of the host cell. Retrovirus genomes commonly contain these three open reading frames that encode for proteins that can be found in the mature virus. Group-specific antigen (gag) codes for core and structural proteins of the virus, polymerase (pol) codes for reverse transcriptase, protease and integrase, and envelope (env) codes for the retroviral coat proteins (see figure 1). Figure 1. Genome organisation of retroviruses.

The process of producing a DNA copy from an RNA molecule is termed reverse transcription. It is carried out by one of the enzymes carried in the virus, called reverse transcriptase. After this DNA copy is produced and is free in the nucleus of the host cell, it must be incorporated into the genome of the host cell. That is, it must be inserted into the large DNA molecules in the cell (the chromosomes). This process is done by another enzyme carried in the virus called integrase (see figure 2).

Now that the genetic material of the virus is incorporated and has become part of the genetic material of the host cell, we can say that the host cell is now modified to contain a new gene. If this host cell divides later, its descendants will all contain the new genes. Sometimes the genes of the retrovirus do not express their information immediately.

Retroviral vectors are created by removal op the retroviral gag, pol, and env genes. These are replaced by the therapeutic gene. In order to produce vector particles a packaging cell is essential. Packaging cell lines provide all the viral proteins required for capsid production and the virion maturation of the vector. These packaging cell lines have been made so that they contain the gag, pol and env genes. Early packaging cell lines contained replication competent retroviral genomes and a single recombination event between this genome and the retroviral DNA vector could result in the production of a wild type virus. Following insertion of the desired gene into in the retroviral DNA vector, and maintainance of the proper packaging cell line, it is now a simple matter to prepare retroviral vectors (see figure 3).

One of the problems of gene therapy using retroviruses is that the integrase enzyme can insert the genetic material of the virus in any arbitrary position in the genome of the host. If genetic material happens to be inserted in the middle of one of the original genes of the host cell, this gene will be disrupted (insertional mutagenesis). If the gene happens to be one regulating cell division, uncontrolled cell division (i.e., cancer) can occur. This problem has recently begun to be addressed by utilizing zinc finger nucleases or by including certain sequences such as the beta-globin locus control region to direct the site of integration to specific chromosomal sites.

Gene therapy trials to treat severe combined immunodeficiency (SCID) were halted or restricted in the USA when leukemia was reported in three of eleven patients treated in the French X-linked SCID (X-SCID) gene therapy trial. Ten X-SCID patients treated in England have not presented leukemia to date and have had similar success in immune reconstitution. Gene therapy trials to treat SCID due to deficiency of the Adenosine Deaminase (ADA) enzyme continue with relative success in the USA, Italy and Japan.

As a reaction to the adverse events in the French X-SCID gene therapy trial, the Recombinant DNA Advisory Committee (RAC) sent a letter to Principal Investigators Conveying RAC Recommendations in 2003. In addition, the RAC published conclusions and recommendations of the RAC Gene Transfer Safety Symposium in 2005. A joint working party of the Gene Therapy Advisory Committee and the Committee on Safety of Medicines (CSM) in the UK lead to the publication of an updated recommendations of the GTAC/CSM working party on retroviruses in 2005.

Read the original here:

Gene Therapy Retrovirus Vectors Explained

Gene Therapy Net – News, Conferences, Vectors, Literature …

Posted on: 28 November 2018, source: fortune.comResearchers in China (Clinical project ‘Safety and validity evaluation of HIV immune gene CCR5 gene editing in human embryos’) used genetic engineering tools (CRISPR) to create twins theoretically immune to HIV, smallpox, and cholera, MIT Technology Review reported. The medical breakthrough is controversial, as many worry about eugenics and designer babies for the wealthy. The twins, named Lulu and Nana, according to lead scientist He Jiankui of Shenzhen in a YouTube video, were the result of in vitro fertilization (IVF). A few weeks old, they appear to be healthy. When they were a single cell, genetic surgery using a popular tool, CRISPR, removed the doorway through which HIV enters to infect people.

Watch the presentation of He Jiankui and discussion during Second International Summit on Human Genome Editing in Hongkong, Wednesday November 28th, 2018.

View original post here:

Gene Therapy Net – News, Conferences, Vectors, Literature …

Stem Cell Treatment | Arizona | Stem Cell Rejuvenation Center

ADIPOSE STEM CELL THERAPIES AND TREATMENTS

PHOENIX ARIZONA | (602) 439-0000

WE PLAY AN ESSENTIALROLE IN IMPROVING THE LIVESOF PATIENTS FROM AROUND THE WORLD

For Immediate Assistance please fill out he form below:

TREATABLE CONDITIONS

HAVE GENERAL QUESTIONS

Please Note: Although we have supplied links to the research journals above on the use of stem cells for specific conditions, we are not saying that any of these studies would relate to your particular condition, nor that it would even be an effective treatment. OurAutologousStem Cell Therapy is not an FDA approved treatment for any condition. We provide stem cell therapy (less than manipulated) as a service &as a practice of medicine only. Please see theFAQ pagefor more information. Thesejournal articlesare for educational purposes only &are not intended to be used to sell or promote our therapy.

MAKING A POSITIVE IMPACT AROUND THE WORLD

2017 Stem Cell Rejuvenation Center

7600 N 15th St. Suite 102Phoenix, AZ 85020 USA

Telephone:(602) 439-0000Fax: (602) 439-0021

Read the rest here:

Stem Cell Treatment | Arizona | Stem Cell Rejuvenation Center

Stem cell

STEM CELL SUPPLEMENTS

Stem cells are cells with the ability to divide for indefinite periods in culture and to give rise to specialized cells.

Stem Cell Supplements are developed based on the merits of stem cells and they are applied for degenerative diseases treatments and to stimulate the formation of all the different tissues of the body: muscle, cartilage, tendon, ligament, bone, blood,nerve, organs, etc. Stem Cell Supplements bring essential health & antiaging benefits by providing necessary elements to the body to improve cellular rejuvenation, organ regeneration and tissue healing.

Read the original here:

Stem cell

Stem cell – Wikipedia

Stem cells are biological cells that can differentiate into other types of cells and can divide to produce more of the same type of stem cells. They are always and only found in the multicellular organisms.

In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cellsectoderm, endoderm and mesoderm (see induced pluripotent stem cells)but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues.

There are three known accessible sources of autologous adult stem cells in humans:

Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one’s own body, just as one may bank his or her own blood for elective surgical procedures.

Adult stem cells are frequently used in various medical therapies (e.g., bone marrow transplantation). Stem cells can now be artificially grown and transformed (differentiated) into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through somatic cell nuclear transfer or dedifferentiation have also been proposed as promising candidates for future therapies.[2] Research into stem cells grew out of findings by Ernest A. McCulloch and James E. Till at the University of Toronto in the 1960s.[3][4]

The classical definition of a stem cell requires that it possesses two properties:

Two mechanisms exist to ensure that a stem cell population is maintained:

1. Obligatory asymmetric replication: a stem cell divides into one mother cell that is identical to the original stem cell, and another daughter cell that is differentiated.

When a stem cell self-renews it divides and does not disrupt the undifferentiated state. This self-renewal demands control of cell cycle as well as upkeep of multipotency or pluripotency, which all depends on the stem cell.[5]

2. Stochastic differentiation: when one stem cell develops into two differentiated daughter cells, another stem cell undergoes mitosis and produces two stem cells identical to the original.

Potency specifies the differentiation potential (the potential to differentiate into different cell types) of the stem cell.[6]

In practice, stem cells are identified by whether they can regenerate tissue. For example, the defining test for bone marrow or hematopoietic stem cells (HSCs) is the ability to transplant the cells and save an individual without HSCs. This demonstrates that the cells can produce new blood cells over a long term. It should also be possible to isolate stem cells from the transplanted individual, which can themselves be transplanted into another individual without HSCs, demonstrating that the stem cell was able to self-renew.

Properties of stem cells can be illustrated in vitro, using methods such as clonogenic assays, in which single cells are assessed for their ability to differentiate and self-renew.[9][10] Stem cells can also be isolated by their possession of a distinctive set of cell surface markers. However, in vitro culture conditions can alter the behavior of cells, making it unclear whether the cells shall behave in a similar manner in vivo. There is considerable debate as to whether some proposed adult cell populations are truly stem cells.[11]

Embryonic stem cells (ESCs) are the cells of the inner cell mass of a blastocyst, an early-stage embryo.[12] Human embryos reach the blastocyst stage 45 days post fertilization, at which time they consist of 50150 cells. ESCs are pluripotent and give rise during development to all derivatives of the three primary germ layers: ectoderm, endoderm and mesoderm. In other words, they can develop into each of the more than 200 cell types of the adult body when given sufficient and necessary stimulation for a specific cell type. They do not contribute to the extra-embryonic membranes or the placenta.

During embryonic development these inner cell mass cells continuously divide and become more specialized. For example, a portion of the ectoderm in the dorsal part of the embryo specializes as ‘neurectoderm’, which will become the future central nervous system.[13] Later in development, neurulation causes the neurectoderm to form the neural tube. At the neural tube stage, the anterior portion undergoes encephalization to generate or ‘pattern’ the basic form of the brain. At this stage of development, the principal cell type of the CNS is considered a neural stem cell. These neural stem cells are pluripotent, as they can generate a large diversity of many different neuron types, each with unique gene expression, morphological, and functional characteristics. The process of generating neurons from stem cells is called neurogenesis. One prominent example of a neural stem cell is the radial glial cell, so named because it has a distinctive bipolar morphology with highly elongated processes spanning the thickness of the neural tube wall, and because historically it shared some glial characteristics, most notably the expression of glial fibrillary acidic protein (GFAP).[14][15] The radial glial cell is the primary neural stem cell of the developing vertebrate CNS, and its cell body resides in the ventricular zone, adjacent to the developing ventricular system. Neural stem cells are committed to the neuronal lineages (neurons, astrocytes, and oligodendrocytes), and thus their potency is restricted.[13]

Nearly all research to date has made use of mouse embryonic stem cells (mES) or human embryonic stem cells (hES) derived from the early inner cell mass. Both have the essential stem cell characteristics, yet they require very different environments in order to maintain an undifferentiated state. Mouse ES cells are grown on a layer of gelatin as an extracellular matrix (for support) and require the presence of leukemia inhibitory factor (LIF) in serum media. A drug cocktail containing inhibitors to GSK3B and the MAPK/ERK pathway, called 2i, has also been shown to maintain pluripotency in stem cell culture.[16] Human ESCs are grown on a feeder layer of mouse embryonic fibroblasts and require the presence of basic fibroblast growth factor (bFGF or FGF-2).[17] Without optimal culture conditions or genetic manipulation,[18] embryonic stem cells will rapidly differentiate.

A human embryonic stem cell is also defined by the expression of several transcription factors and cell surface proteins. The transcription factors Oct-4, Nanog, and Sox2 form the core regulatory network that ensures the suppression of genes that lead to differentiation and the maintenance of pluripotency.[19] The cell surface antigens most commonly used to identify hES cells are the glycolipids stage specific embryonic antigen 3 and 4 and the keratan sulfate antigens Tra-1-60 and Tra-1-81. By using human embryonic stem cells to produce specialized cells like nerve cells or heart cells in the lab, scientists can gain access to adult human cells without taking tissue from patients. They can then study these specialized adult cells in detail to try and catch complications of diseases, or to study cells reactions to potentially new drugs. The molecular definition of a stem cell includes many more proteins and continues to be a topic of research.[20]

There are currently no approved treatments using embryonic stem cells. The first human trial was approved by the US Food and Drug Administration in January 2009.[21] However, the human trial was not initiated until October 13, 2010 in Atlanta for spinal cord injury research. On November 14, 2011 the company conducting the trial (Geron Corporation) announced that it will discontinue further development of its stem cell programs.[22] ES cells, being pluripotent cells, require specific signals for correct differentiationif injected directly into another body, ES cells will differentiate into many different types of cells, causing a teratoma. Differentiating ES cells into usable cells while avoiding transplant rejection are just a few of the hurdles that embryonic stem cell researchers still face.[23] Due to ethical considerations, many nations currently have moratoria or limitations on either human ES cell research or the production of new human ES cell lines. Because of their combined abilities of unlimited expansion and pluripotency, embryonic stem cells remain a theoretically potential source for regenerative medicine and tissue replacement after injury or disease.[24]

Human embryonic stem cell colony on mouse embryonic fibroblast feeder layer

The primitive stem cells located in the organs of fetuses are referred to as fetal stem cells.[25]There are two types of fetal stem cells:

Adult stem cells, also called somatic (from Greek , “of the body”) stem cells, are stem cells which maintain and repair the tissue in which they are found.[27] They can be found in children, as well as adults.[28]

Pluripotent adult stem cells are rare and generally small in number, but they can be found in umbilical cord blood and other tissues.[29] Bone marrow is a rich source of adult stem cells,[30] which have been used in treating several conditions including liver cirrhosis,[31] chronic limb ischemia [32] and endstage heart failure.[33] The quantity of bone marrow stem cells declines with age and is greater in males than females during reproductive years.[34] Much adult stem cell research to date has aimed to characterize their potency and self-renewal capabilities.[35] DNA damage accumulates with age in both stem cells and the cells that comprise the stem cell environment. This accumulation is considered to be responsible, at least in part, for increasing stem cell dysfunction with aging (see DNA damage theory of aging).[36]

Most adult stem cells are lineage-restricted (multipotent) and are generally referred to by their tissue origin (mesenchymal stem cell, adipose-derived stem cell, endothelial stem cell, dental pulp stem cell, etc.).[37][38] Muse cells (multi-lineage differentiating stress enduring cells) are a recently discovered pluripotent stem cell type found in multiple adult tissues, including adipose, dermal fibroblasts, and bone marrow. While rare, muse cells are identifiable by their expression of SSEA-3, a marker for undifferentiated stem cells, and general mesenchymal stem cells markers such as CD105. When subjected to single cell suspension culture, the cells will generate clusters that are similar to embryoid bodies in morphology as well as gene expression, including canonical pluripotency markers Oct4, Sox2, and Nanog.[39]

Adult stem cell treatments have been successfully used for many years to treat leukemia and related bone/blood cancers through bone marrow transplants.[40] Adult stem cells are also used in veterinary medicine to treat tendon and ligament injuries in horses.[41]

The use of adult stem cells in research and therapy is not as controversial as the use of embryonic stem cells, because the production of adult stem cells does not require the destruction of an embryo. Additionally, in instances where adult stem cells are obtained from the intended recipient (an autograft), the risk of rejection is essentially non-existent. Consequently, more US government funding is being provided for adult stem cell research.[42]

Multipotent stem cells are also found in amniotic fluid. These stem cells are very active, expand extensively without feeders and are not tumorigenic. Amniotic stem cells are multipotent and can differentiate in cells of adipogenic, osteogenic, myogenic, endothelial, hepatic and also neuronal lines.[43]Amniotic stem cells are a topic of active research.

Use of stem cells from amniotic fluid overcomes the ethical objections to using human embryos as a source of cells. Roman Catholic teaching forbids the use of embryonic stem cells in experimentation; accordingly, the Vatican newspaper “Osservatore Romano” called amniotic stem cells “the future of medicine”.[44]

It is possible to collect amniotic stem cells for donors or for autologuous use: the first US amniotic stem cells bank [45][46] was opened in 2009 in Medford, MA, by Biocell Center Corporation[47][48][49] and collaborates with various hospitals and universities all over the world.[50]

Adult stem cells have limitations with their potency; unlike embryonic stem cells (ESCs), they are not able to differentiate into cells from all three germ layers. As such, they are deemed multipotent.

However, reprogramming allows for the creation of pluripotent cells, induced pluripotent stem cells (iPSCs), from adult cells. These are not adult stem cells, but adult cells (e.g. epithelial cells) reprogrammed to give rise to cells with pluripotent capabilities. Using genetic reprogramming with protein transcription factors, pluripotent stem cells with ESC-like capabilities have been derived.[51][52][53] The first demonstration of induced pluripotent stem cells was conducted by Shinya Yamanaka and his colleagues at Kyoto University.[54] They used the transcription factors Oct3/4, Sox2, c-Myc, and Klf4 to reprogram mouse fibroblast cells into pluripotent cells.[51][55] Subsequent work used these factors to induce pluripotency in human fibroblast cells.[56] Junying Yu, James Thomson, and their colleagues at the University of WisconsinMadison used a different set of factors, Oct4, Sox2, Nanog and Lin28, and carried out their experiments using cells from human foreskin.[51][57] However, they were able to replicate Yamanaka’s finding that inducing pluripotency in human cells was possible.

Induced pluripotent stem cells differ from embryonic stem cells. They share many similar properties, such as pluripotency and differentiation potential, the expression of pluripotency genes, epigenetic patterns, embryoid body and teratoma formation, and viable chimera formation,[54][55] but there are many differences within these properties. The chromatin of iPSCs appears to be more “closed” or methylated than that of ESCs.[54][55] Similarly, the gene expression pattern between ESCs and iPSCs, or even iPSCs sourced from different origins.[54] There are thus questions about the “completeness” of reprogramming and the somatic memory of induced pluripotent stem cells. Despite this, inducing adult cells to be pluripotent appears to be viable.

As a result of the success of these experiments, Ian Wilmut, who helped create the first cloned animal Dolly the Sheep, has announced that he will abandon somatic cell nuclear transfer as an avenue of research.[58]

Furthermore, induced pluripotent stem cells provide several therapeutic advantages. Like ESCs, they are pluripotent. They thus have great differentiation potential; theoretically, they could produce any cell within the human body (if reprogramming to pluripotency was “complete”).[54] Moreover, unlike ESCs, they potentially could allow doctors to create a pluripotent stem cell line for each individual patient.[59] Frozen blood samples can be used as a valuable source of induced pluripotent stem cells.[60] Patient specific stem cells allow for the screening for side effects before drug treatment, as well as the reduced risk of transplantation rejection.[59] Despite their current limited use therapeutically, iPSCs hold create potential for future use in medical treatment and research.

To ensure self-renewal, stem cells undergo two types of cell division (see Stem cell division and differentiation diagram). Symmetric division gives rise to two identical daughter cells both endowed with stem cell properties. Asymmetric division, on the other hand, produces only one stem cell and a progenitor cell with limited self-renewal potential. Progenitors can go through several rounds of cell division before terminally differentiating into a mature cell. It is possible that the molecular distinction between symmetric and asymmetric divisions lies in differential segregation of cell membrane proteins (such as receptors) between the daughter cells.[61]

An alternative theory is that stem cells remain undifferentiated due to environmental cues in their particular niche. Stem cells differentiate when they leave that niche or no longer receive those signals. Studies in Drosophila germarium have identified the signals decapentaplegic and adherens junctions that prevent germarium stem cells from differentiating.[62][63]

Stem cell therapy is the use of stem cells to treat or prevent a disease or condition. Bone marrow transplant is a form of stem cell therapy that has been used for many years without controversy.[64][65]

Stem cell treatments may lower symptoms of the disease or condition that is being treated. The lowering of symptoms may allow patients to reduce the drug intake of the disease or condition. Stem cell treatment may also provide knowledge for society to further stem cell understanding and future treatments.[66]

Stem cell treatments may require immunosuppression because of a requirement for radiation before the transplant to remove the person’s previous cells, or because the patient’s immune system may target the stem cells. One approach to avoid the second possibility is to use stem cells from the same patient who is being treated.

Pluripotency in certain stem cells could also make it difficult to obtain a specific cell type. It is also difficult to obtain the exact cell type needed, because not all cells in a population differentiate uniformly. Undifferentiated cells can create tissues other than desired types.[67]

Some stem cells form tumors after transplantation;[68] pluripotency is linked to tumor formation especially in embryonic stem cells, fetal proper stem cells, induced pluripotent stem cells. Fetal proper stem cells form tumors despite multipotency.[69]

Some of the fundamental patents covering human embryonic stem cells are owned by the Wisconsin Alumni Research Foundation (WARF) they are patents 5,843,780, 6,200,806, and 7,029,913 invented by James A. Thomson. WARF does not enforce these patents against academic scientists, but does enforce them against companies.[70]

In 2006, a request for the US Patent and Trademark Office (USPTO) to re-examine the three patents was filed by the Public Patent Foundation on behalf of its client, the non-profit patent-watchdog group Consumer Watchdog (formerly the Foundation for Taxpayer and Consumer Rights).[70] In the re-examination process, which involves several rounds of discussion between the USPTO and the parties, the USPTO initially agreed with Consumer Watchdog and rejected all the claims in all three patents,[71] however in response, WARF amended the claims of all three patents to make them more narrow, and in 2008 the USPTO found the amended claims in all three patents to be patentable. The decision on one of the patents (7,029,913) was appealable, while the decisions on the other two were not.[72][73] Consumer Watchdog appealed the granting of the ‘913 patent to the USPTO’s Board of Patent Appeals and Interferences (BPAI) which granted the appeal, and in 2010 the BPAI decided that the amended claims of the ‘913 patent were not patentable.[74] However, WARF was able to re-open prosecution of the case and did so, amending the claims of the ‘913 patent again to make them more narrow, and in January 2013 the amended claims were allowed.[75]

In July 2013, Consumer Watchdog announced that it would appeal the decision to allow the claims of the ‘913 patent to the US Court of Appeals for the Federal Circuit (CAFC), the federal appeals court that hears patent cases.[76] At a hearing in December 2013, the CAFC raised the question of whether Consumer Watchdog had legal standing to appeal; the case could not proceed until that issue was resolved.[77]

Diseases and conditions where stem cell treatment is being investigated include:

Research is underway to develop various sources for stem cells, and to apply stem cell treatments for neurodegenerative diseases and conditions, diabetes, heart disease, and other conditions.[93] Research is also underway in generating organoids using stem cells, which would allow for further understanding of human development, organogenesis, and modeling of human diseases.[94]

In more recent years, with the ability of scientists to isolate and culture embryonic stem cells, and with scientists’ growing ability to create stem cells using somatic cell nuclear transfer and techniques to create induced pluripotent stem cells, controversy has crept in, both related to abortion politics and to human cloning.

Hepatotoxicity and drug-induced liver injury account for a substantial number of failures of new drugs in development and market withdrawal, highlighting the need for screening assays such as stem cell-derived hepatocyte-like cells, that are capable of detecting toxicity early in the drug development process.[95]

See more here:

Stem cell – Wikipedia

Stem Cell Therapy for Anti-Aging and Sexual Performance …

Stem Cell Therapy has been around for quite some time, but due to high cost it was primarily used for recovery in athletes and the financial elite. However, with the progression of science and knowledge, stem cell therapy has become much more widely used and financially attainable.

Tampa Rejuvenation is the first in Tampa Bay to utilize the benefits of stem cell therapy for the purpose of anti-aging and sexual performance. We realize as our patients age, their bodies no longer have the regenerative properties to attain the desired results from using their growth factors alone as with our PRP, or Plasma Rich Platelet, therapy. Although many patients will still yield improvement with the PRP alone, the magnitude of cytokines and growth factors in your blood as you age will deplete with age. By implementing stem cell therapy, the number of growth factors are exponential allowing our bodies to regenerate on a magnitude that is otherwise unattainable with some results lasting for 3-5 years.

Stem Cell Therapy can be used to restore vitality to the skin, encourage the growth of hair, and even restore sexual performance and pleasure.

Read more here:

Stem Cell Therapy for Anti-Aging and Sexual Performance …

NSI Stem Cell | What Is Stem Cell Therapy?

This innovative therapy option for alleviating pain and restoring function in the body could be the answer youve been looking for! We know you may have tried everything, and may have seen numerous doctors to take care of your condition, without real success. This can be very frustrating and can cause a lot of stress on you and your family. It is very important to your recovery to find someone that understands your journey and what you have been through along the way.

You may have been through the ringer with your injury or condition. Many of our patients have spent years getting their hopes up, and then getting their hopes dashed.

Stem Cell Therapy is about using your bodys own stem cells to regenerate damagedtissue. So if you, or someone you love, is suffering please read on to find out who can be helped and how.

Our Stem Cell Therapy is an innovative therapy that is recommendedfor a wide variety of chronic conditions, yet many people are learning about it now for the first time.

These are not embryonic stem cells or cells from fetuses.These regenerative cells come straight from your own body.

They are extracted just a few hours before theyre injected back into your body and put to work to heal damaged or dysfunctional tissue.

We use a variety of stem cells derived from the patients own tissues. Our preferred choice is bone marrow or fat because the cells there are multi-potent which means that they have the ability to differentiate into muscle, tendons, ligaments, bone, and cartilage. Once introduced into the damaged or diseased area, the stem cells can then heal your damaged tissue and regenerate new healthy tissue.

Stem Cell Therapy offers significant potential for the healing of tissues that have become injured as a result of the aging process.

Follow this link:

NSI Stem Cell | What Is Stem Cell Therapy?

Stem Cell Therapy for Osteoarthritis – StemGenex

Stem Cell Therapy for Osteoarthritis

New treatments and advances in research are giving new hope to people affected by Osteoarthritis pain and symptoms. StemGenex provides stem cell therapy for Osteoarthritis to help those with unmet clinical needs achieve optimum health and better quality of life.

Stem cell therapy for Osteoarthritis is being studied for efficacy in improving the complications in patients through the use of their own stem cells. These procedures may help patients who dont respond to typical drug treatment, want to reduce their reliance on medication, or are looking to try stem cell therapy before starting drug treatment.

To learn more about becoming a patient and receiving stem cell therapy for Osteoarthritis through StemGenex, please contact one of our patient advocates at (800) 609-7795 or fill out the contact form on this page.Below are some frequently asked questions about stem cell treatment for Osteoarthritis.

The majority of complications in Osteoarthritis patients are related to the deterioration of cartilage that cushions the ends of bones in your joints. Cartilage is a firm, slippery tissue that permits nearly frictionless joint motion. In Osteoarthritis, this surface become rough. Eventually, if the cartilage wears down completely, patients will be left with bone rubbing on bone.

Stem cell treatment provided by StemGenex is designed to target these areas within the joints to help with the creation of new cartilage cells. Mesenchymal stem cells are multipotent and have the ability to differentiate into cartilage called (chondrytes). The goal of each stem cell treatment is to inject the stem cells into the joint to create cartilage (chondryte cells). Stem cells are a natural anti-inflammatories which can assist with Osteoarthritis pain and swelling in the joint area.

Stem cells are the basic building blocks of human tissue and have the ability to repair, rebuild, and rejuvenate tissues in the body. When a disease or injury strikes, stem cells respond to specific signals and set about to facilitate the healing process by differentiating into specialized cells required for the bodys repair.

There are four known types of stem cells which include:

StemGenex provides autologous adult stem cells (from fat tissue) where the stem cells come from the person receiving treatment.

StemGenex provides autologous adult adipose-derived stem cells (from fat tissue) where the stem cells come from the person receiving treatment.

We tap into our bodys stem cell reserve daily to repair and replace damaged or diseased tissue. When the bodys reserve is limited and as it becomes depleted, the regenerative power of our body decreases and we succumb to disease and injury.

Three sources of stem cells from a patients body are used clinically which include adipose tissue (fat), bone marrow and peripheral blood.

Performed by Board Certified Physicians, dormant stem cells are extracted from the patients adipose tissue (fat) through a minimally invasive mini-liposuction procedure with little to no downtime.

During the liposuction procedure, a small area (typically the abdomen) is numbed with an anesthetic and patients receive mild to moderate sedation. Next, the extracted dormant stem cells are isolated from the fat and activated, and then comfortably infused back into the patient intravenously (IV) and via other directly targeted methods of administration. The out-patient procedure takes approximately four to five hours.

StemGenex provides multiple administration methods for Osteoarthritis patients to best target the disease related conditions and symptoms which include:

Since each condition and patient are unique, there is no guarantee of what results will be achieved or how quickly they may be observed. According to patient feedback, many patients report results in one to three months, however, it may take as long as six to nine months. Individuals interested in stem cell therapy are urged to consult with their physician before choosing investigational autologous adipose-derived stem cell therapy as a treatment option.

In order to determine if you are a good candidate for adult stem cell treatment, you will need to complete a medical history form which will be provided by your StemGenex Patient Advocate. Once you complete and submit your medical history form, our medical team will review your records and determine if you are a qualified candidate for adult stem cell therapy.

StemGenex team members are here to help assist and guide you through the patient process.

Patients travel to StemGenex treatment center located in San Diego, California for stem cell treatment from all over the United States, Canada and around the globe. Treatment will consist of one visit lasting a total of three days. The therapy is minimally invasive and there is little to no down time. Majority of patients fly home the day after treatment.

We provide stem cell therapy for a wide variety of diseases and conditions for which traditional treatment offers less than optimal options. Some conditions include Multiple Sclerosis, Parkinson’s Disease, Rheumatoid Arthritis, Osteoarthritis and Chronic Obstructive Pulmonary Disease (COPD).

The side effects of the mini-liposuction procedure are minimal and may include but are not limited to: minor swelling, bruising and redness at the procedure site, minor fever, headache, or nausea. However, these side effects typically last no longer than 24 hours and are experienced mostly by people with sensitivity to mild anesthesia. No long-term negative side effects or risks have been reported.

The side effects of adipose-derived stem cell therapy are minimal and may include but are not limited to: infection, minor bleeding at the treatment sites and localized pain. However, these side effects typically last no longer than 24 hours. No long-term negative side effects or risks have been reported.

StemGenex provides adult stem cell treatment with mesenchymal stem cells which come from the person receiving treatment. Embryonic stem cells are typically associated with ethical and political controversies.

Stem cell treatment is not FDA approved.

Stem cell for arthritis treatment is not covered by health insurance at this time. The cost for standard preoperative labs are included. Additional specific labs may be requested at the patients expense.

Osteoarthritis, or degenerative joint disease, is the most common type of arthritis. It is caused by the degradation of a joints cartilage. Cartilage is a firm, rubbery material that covers and cushions the ends of bones in normal joints. Its main function is to reduce friction in the joints and serve as an intermediary or cushion.

Over time, the cartilage may wear away in some areas, greatly decreasing its ability to act as a shock absorber. As the cartilage wears away, tendons and ligaments stretch, causing pain. In advanced cases, the bones could rub against each other, causing even more pain and loss of movement.

Osteoarthritis is very common in middle-aged and older people, and its symptoms can range from very mild to very severe. The disorder most often affects hands and weight-bearing joints such as knees, hips, feet and shoulders, but can affect almost any joint in the body.

Go here to read the rest:

Stem Cell Therapy for Osteoarthritis – StemGenex

Stem Cell Research & Therapy | Home page

“Stem cells have enormous potential for alleviating suffering for many diseases which currently have no effective therapy. The field has progressed to the clinic and it is important that this pathway is underpinned by excellent science and rigorous standards of clinical research. The journal provides an important avenue of publication in translational aspects of stem cell therapy spanning preclinical studies, clinical research and commercialization.”

Timothy O’Brien,Editor-in-Chief,Stem Cell Research & Therapy

“The study of stem cells is one of the most exciting areas of contemporary biomedical research. We believe that Stem Cell Research & Therapy will act as a highly active forum for both basic and translational research into stem cell biology and therapies. Specifically, by developing this forum for cutting edge research, we hope that Stem Cell Research & Therapy will play a significant role in bringing together the critical information to synergize stem cell science with stem cell therapies.”

Rocky S Tuan,Editor-in-Chief,Stem Cell Research & Therapy

Read this article:

Stem Cell Research & Therapy | Home page

Stem Cells in Milwaukee, WI | Wisconsin Stem Cell Therapy

Dave, age 68, avid hunter and snow skier, his orthopedic surgeon suggested that he would need knee replacement surgery. He instead found relief through our powerful Stem Cell Therapy treatment protocol.

He said about his knee after our treatment, It is 85% better than when I walked in. I would recommend the procedure before trying anything else.

See original here:

Stem Cells in Milwaukee, WI | Wisconsin Stem Cell Therapy

Is Stem Cell Therapy Covered by Medicare?

Stem cell therapy has been a hot topic in the press lately. With more and more medical providers offering stem cell treatments, patients around the country have been wondering, Is Stem Cell Therapy covered by Medicare.

Stem Cell research has shown that its an effective treatment for chronic joint pain and arthritis sufferers and more recent studies are starting to show the benefit for treatment of neurological disorders as well. (M.S., Parkinsons, and Stroke)

So the team at Stem Cell: The Magazine, have put together some information to answer this question of insurance coverage for potential medical enrollees seeking stem cell and regenerative treatments.

So what is the answer to Does Medicare cover Stem Cell therapy?

From the research that we have pulled up regarding Medicare Insurance Coverage for stem cell therapy; medicare does cover stem cell treatments, but not for some of the chronic degenerative conditions that regenerative treatments (stem cell therapy) can help them with.

You can see in this publication from BCBS that stem cell therapy is covered for the following conditions:

INDICATIONS FOR COVERAGE

Section 2.aAllogeneic Hematopoietic Stem Cell Transplantation (HSCT) eligible for coverage in the following:a) The treatment of leukemiab) The treatment of severe combined immunodeficiency disease (SCID) and for the treatment of Wiskott-Aldrich syndrome.ORc) The treatment of Myelodysplastic Syndromes (MDS) pursuant to Coverage with Evidence Development (CED) in the context of a Medicare-approved, prospective clinical study.3. Autologous Stem Cell Transplantation(AuSCT) is eligible for coverage in the following:a) Acute leukemia in remission who have a high probability of relapse and whohave no human leucocyte antigens (HLA)-matched;ORb) Resistant non-Hodgkins lymphomas or those presenting with poor prognosticfeatures following an initial response;ORc) Recurrent or refractory neuroblastoma;ORd) Advanced Hodgkins disease who have failed conventional therapy and have no HLA-matched donor.

You can see that outside of the listed conditions above, Medicare does not cover stem cell therapy for treatments joint conditions or neurological conditions that patients are more commonly seeking treatment for.

In this article, it clearly states that stem cell therapy for the coverage of orthopedic conditions is not covered:

The orthopedic application of stem-cell therapy is not addressed within the stem cell transplantation NCD. (NCD = National Care Determinations)

What this means for any patient that is looking to receive regenerative and stem cell treatments for orthopedic conditions such as:

M

M

Download our free Stem Cell 101 educational report now!

Medicare will not cover treatment for these conditions. In fact, most major medical carriers will not provide coverage for these treatments either.

Many chronic joint pain sufferers wonder why Medicare and most major carriers dont provide coverage for these treatments if they are so effective, but there is a simple answer for why this is.

Medicare and most major health insurance are for emergency conditions. Regenerative medicine is still considered an elective treatment, close to wellness care. Insurance carriers are not in the business of providing wellness for coverage for their participants.

We found a great video that explains more about this by John R Hoffman at Arcadia University. In it he describes the challenges of Medicare coverage for Stem Cell Therapy.

Our hope at Stem Cell: The Magazine is that as more and more patients continue to seek out treatment of their orthopedic and neurological conditions using stem cell and regenerative treatments, that Mediare and major health insurances will accept stem cell as the first treatment for these chronic conditions.

Learn More About Stem Cell Therapy

Is Stem Cell Therapy Covered by Medicare? was last modified: October 3rd, 2018 by Stem Cell The Magazine

Read more:

Is Stem Cell Therapy Covered by Medicare?

Home – Stem Cell Therapy in Orlando, Florida

A Breakthrough Technology

Stem Cell Therapy is a procedure in which new cells are introduced directly into an injurious area or joint, promoting healing and growth. The multitude of administered cells allows the body to proceed with the healing process at an accelerated rate. This treatment has been recognized by the medical industry worldwide as the biggest medical breakthrough in natural healing. Athletes such as Kobe Bryant, Alex Rodriguez and Peyton Manning have traveled abroad for this unique treatment. And now, SCI brings this same solution to you right here in Florida.

Here is the original post:

Home – Stem Cell Therapy in Orlando, Florida

Stem Cell Therapy & Treatment Center | TruStem Cell Therapy

Patient-Centric Care

At TruStem Cell Therapy, we focus on patient-centric care that has the potential to improve the quality of the patients life with less risk of complication.

Some patients experience mild soreness after harvesting and bruising that clears up quickly. The therapy can takes 1 day to complete. This is a same day procedure. The visit is 3 days.

Adult stem cell therapy for chronic disease is a safe and effective therapy to improve disease-related symptoms. Thus, patients with conditions such as stroke, osteoarthritis, inflammatory bowel disease or critical limb ischemia may feel better and live fuller lives.

Go here to read the rest:

Stem Cell Therapy & Treatment Center | TruStem Cell Therapy

Stem Cell Therapy | Advanced Regenerative Orthopedics

Stem Cell Therapy involves the use of stem cells to stimulate the bodys natural repair mechanisms to repair, regenerate or replace damaged cells, tissues and organs. This physician-directed therapy is very safe, ethical and does not entail the use of any fetal or embryonic cells or tissue. It has been described as the future of medicine by many prestigious groups including the National Institutes of Health and the Institute of Medicine.

The field of Stem Cell Therapy continues to evolve, focusing on cures rather than just treatments for essentially all types of chronic diseases and conditions, including diabetes and cardiovascular disease, as well as various forms of arthritis and various orthopedic problems. When cells are transplanted into a patient, they do not stay for more than a few days. However, the cells provide a large and robust stimulus to turn on native repair mechanisms. The number of stem cells present in the body and their functional capacity to repair damaged tissue declines with each advancing decade of life, and chronic diseases further impede their ability to respond to chronic injury or damage in the body. This is why research has led to new solutions, which include the use of umbilical cord blood as the source of cells, which have the most potent ability to generate new tissues without risk of rejection. We at Advanced Regenerative Orthopedics use stem cells that are supplied by an FDA-registered cord blood bank.

Stem Cell Therapy and Tissue Engineering are much simpler and effective options that use very powerful young cells to stimulate the patients own native repair mechanisms to regenerate new cartilage and bone. The physician-directed treatment at ARO is a comprehensive approach to a specific joint with the goal of reducing the disabling pain and increasing function.

At Advanced Regenerative Orthopedics, our goal is to provide minimally invasive treatments along with regenerative techniques to target your bodys natural healing ability. Used as part of our innovative, three-tiered approach, physician-directed arthritis stem cell treatment can help patients of all ages get pain relief, increase their joint mobility and enjoy a higher quality of life.

Stem cell therapy can be an effective treatment for those suffering from a broad range of arthritic conditions. By using stem cells for arthritis, Advanced Regenerative Orthopedics stimulates your bodys natural mechanism to repair, regenerate and replace damaged cells within your joints.

If you live in Tampa, Brandon, St. Petersburg, Clearwater, Lakeland, Sarasota, The Villages, Ocala, or the surrounding areas and are interested in learning more about using stem cells for arthritis or any other joint condition, please contact our courteous and efficient office staff today to schedule an appointment. We look forward to discussing the benefits of physician-directed arthritis stem cell treatment with you and determining the best course of treatment to restore your joint health.

As many of our patients travel to us from outside the state of Florida for our world class procedures, our team is very familiar with managing the care & travel for remote patients.

Read the original:

Stem Cell Therapy | Advanced Regenerative Orthopedics

Stem Cell Therapy for Arthritis

Experts are researching ways to use stem cells to treat arthritis in the knee and other joints. Many doctors already use stem cell therapy to treat arthritis, but it is not considered standard practice.

Stem cell therapy is one of several non-surgical treatments for arthritis pain. See Knee Osteoarthritis Treatment

There is a lot of debate around stem cell treatment, and it is helpful for potential patients to understand what stem cells are and the issues surrounding their use in arthritis therapy.

Article continues below

Stem cells are located throughout the body. What makes stem cells special is that they can:

See What Are Stem Cells?

Advocates of stem cell treatments hypothesize that, when placed into a certain environment, stem cells can transform to accommodate a certain need. For example, stem cells that are placed near damaged cartilage are hypothesized to develop into cartilage tissue.

See What Is Cartilage?

Stem cells can be applied during a surgery (such as the surgical repair of a torn knee meniscus) or delivered through injections directly into the arthritis joint.

Watch: Knee Meniscus Tear Video

When administering stem cell injections, many physicians use medical imaging, such as ultrasound, in order to deliver cells precisely to the site of cartilage damage.

The most common type of stem cells used for treating arthritis are mesenchymal stem cells. Mesenchymal stem cells are usually collected from the patients fat tissue, blood, or bone marrow.

The process of collecting cells is often called harvesting.

Bone marrow is usually taken from the pelvic bone using a needle and syringe, a process called bone marrow aspiration. The patient is given a local anesthetic and may also be given a sedative before the procedure.

There are no professional medical guidelines for who can and cannot receive stem cell therapy for arthritis. For now, the decision about who gets stem cell therapy is up to patients and doctors.

See Arthritis Treatment Specialists

There is some evidence that people with severe arthritis can benefit from stem cell therapy.1 Most research indicates that younger patients who have relatively mild osteoarthritis or cartilage damage see the most benefit.2

See What Is Osteoarthritis?

Some doctors have certain criteria for recommending stem cell therapy. For example, they only recommend it to patients who are healthy and have relatively little cartilage damage. Other doctors make recommendations on a case-by-case basis.

Stem cell therapy is a promising but still unproven treatment, and will not be covered by most insurance companies.

Complete Listing of References

See more here:

Stem Cell Therapy for Arthritis

National Stem Cell Centers | Stem Cell Therapy in New York …

At National Stem Cell Centers, our affiliate physicians focus on leading edge, regenerative medicine. Instead of synthetic compounds, prescription medications, or surgical procedures, they activate your own natural cellular resources to promote healing.

Our goal is to allow patients access to this potentially revolutionary form of treatment to harness your bodys natural healing cascade mechanism for the repair of damaged tissues.

Adult mesenchymal stem cells are a form of undifferentiated cells. These kinds of stem cells are found in great abundance within abdominal adipose (fatty) tissue and bone marrow. Lying dormant (non-replicating), these remarkably intelligent cells can be activated to become other kinds of cells specific to tendons, muscle, blood vessels, nerves, and bone.

This means that regenerative cell therapies can be helpful in reducing pain, chronic inflammation, and the mitigation of some degenerative disease states.

At National Stem Cell Centers, our affiliated physicians utilize autologous stem cells harvested from your own tissue, without any form of artificial cellular manipulation, enzymes, expansion or multiplication.

Conditions Addressed

Anecdotal evidence including patient feedback suggests that stem cell procedures may be helpful in addressing conditions and injuries such as joint pain including knee pain, arthritis, osteoarthritis, back pain, and chronic inflammation.

As technology evolves, autoimmune and neurological disorders, orthopedic and urological conditions, heart and lung diseases, erectile dysfunction (ED), hair loss, cellular rejuvenation, autism, and aesthetics could be addressed as well.

Why National Stem Cell Centers?

There are many reasons you should choose our affiliated physicians including:- Our doctors are surgeons, not ordinary physicians- FDA registered tissue processing lab- No multiplication/duplication/expansion of cells- Numerous happy patients as evidenced by our 5 Star Reviews- IND and IRB Applications in preparation- Initiating participation in clinical trials- Affordable prices- Zero percent financing

Call today to find out if you are a candidate and to schedule a complimentary consultation. National Stem Cell Centers has affiliate physicians in New York City, Great Neck, Hauppauge and Southampton, Long Island, New Jersey, Dallas and Houston in Texas, and Newport Beach, California.

Read this article:

National Stem Cell Centers | Stem Cell Therapy in New York …

Regenexx Stem Cell Procedures | 100% Non-Surgical Pain Treatment

Stem Cell Therapy Facts & Information

Stem Cell Therapyas an alternative solution to invasive surgery for patients suffering from a wide range of degenerative conditions and injuries including:

The Regenexx Stem Cell Therapy protocol produces the highest stem cell concentrations possible. All procedures utilize advanced imaging guidance to ensure the stem cells are delivered precisely to the area in need to assist healing in the damaged tissues.

Our bodys stem cells are responsible for healing us. However, as we age or sustain injury, we sometimes cannot get enough of these healing cells into the injured area. Stem Cell Therapy solves this problem by harvesting the patients own cells and then injecting them directly into the area in need. These cells can assist in the healing of damaged tissue, tendons, ligaments, cartilage and bone while decreasing downtime and avoiding painful rehabilitation periods typically associated with surgery. In a series of three injections spaced roughly two to five days apart, the patient can be well on their way to a full recovery.

TheStem Cell Therapy protocol is a series of three procedures that happen over the course of several days.

PRE-INJECTION: A dextrose solution that stimulates surrounding soft tissue & prepares it for stem cell procedure.

SAME-DAY STEM CELL PROCEDURE: In the morning, blood and bone marrow samples are taken. Later that day, stem cells and blood platelets are introduced into the injury site.

POST-INJECTION: Additional platelet stimulants are introduced to invigorate stem cells and boost healing process.

Stem Cell Therapy is intended to help your body actually heal injured tissue. Initial improvement and reduction in pain may be experienced very quickly, with continued improvement as the healing progresses. Patient studies have shown Stem Cell Therapy to be very effective at relieving pain, while MRI images have confirmed successful tissue repair following stem cell therapy. The need for surgery can be greatly reduced by treating injured tissues before the damage progresses and the condition is irreversible.

Have you been diagnosed with one the following:

Are you currently experiencing:

Go here to read the rest:

Regenexx Stem Cell Procedures | 100% Non-Surgical Pain Treatment

Stem Cell Therapy for Knee Injuries and Arthritis

Utilizing your own stem cells to help the healing process of injured or degenerated jointsThe human body is made of billions of specialized cells that form specific organs like the brain, skin, muscles, tendons, ligaments, joints, and bone. Each day these cells go through a degenerative and regenerative process. As older cells die, new cells are born from stem cells with the unique capability of being able to create multiple types of other cells. However, when tissues are injured, the degenerative process exceeds this regenerative process, resulting in structures that become weaker, painful and less functional. While there are several types of stem cells, those that are best at promoting musculoskeletal healing (tendon, ligament, cartilage and bone) are found in bone marrow. These mesenchymal stem cells, or MSCs, are essential to successful patient outcomes and at Stem Cell ARTS we utilize the patented Regenexx Stem Cell Protocol, which iscapable of yielding much higher concentrations of these important cells.Most Commonly Treated Knee Conditions and InjuriesBelow is a list of the most common knee injuries and conditions that we treat with stem cells or platelet procedures. This is not an all-inclusive list.Knee Patient Outcome Data

This Regenexx bone marrow derived stem cell treatment outcome data analysis is part of the Regenexx data download of patients who were tracked in the Regenexx advanced patient registry.

Regenexx has published more data on stem cell safety in peer reviewed medical research for orthopedic applications than any other group world-wide. This is a report of 1,591 patients and 1,949 procedures treated with the Regenexx Stem Cell Procedure. Based on our analysis of this treatment registry data, the Regenexx Stem Cell Procedure is about as safe as any typical injection procedure, which is consistent with what we see every day in the clinic.

To use, begin playing the first video. Then use the Playlist Dropdown Menu in the upper left corner of the video display to show all video titles. Use the Scroll Bar on the right hand side of the playlist to browse all video titles if required.

These non-surgical stem cell injection procedures happen within a single day and may offer a viable alternative for those who are facing surgery or even joint replacement. Patients are typically able to return to normal activity following the procedure and are able to avoid the painful and lengthy rehabilitation periods that are typically required to help restore strength, mobility and range-of-motion following invasive joint surgeries. Lastly, patients are far less vulnerable to the risks of surgeries, such as infection and blood clots.

Modern techniques in todays medicine allows us to withdraw stem cells from bone marrow, concentrate them through a lab process and then re-inject them precisely into the injured tissues in other areas of the body using advanced imaging guidance. Through Fluoroscopy and MSK Ultrasound, were able to ensure the cells are being introduced into the exact area of need. When the stem cells are re-injected, they enhance the natural repair process of degenerated and injured tendons, ligaments, and arthritic joints Turning the tables on the natural breakdown process that occurs from aging, overuse and injury.

If you are suffering from a joint injury or degenerative condition such as osteoarthritis, you may be a good candidate for a stem cell procedure. Please complete the form below and we will immediately send you an email with additional information and next steps in determining whether youre a candidate for these advanced stem cell procedures.

Link:

Stem Cell Therapy for Knee Injuries and Arthritis


12345...102030...