For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism

Preserving Life Through Cryonics

Cryonics is the practice of deep-freezing recently deceased bodies(or even just the brains of those who have recently died)in the hopes of one day reviving them. It has been the subject of serious scientific exploration and study as well as a fair share of pseudoscience, lore, and myth. Fictional accounts like Batmans Iceman, and the (untrue) rumors of Walt Disney being cryogenically frozen have, unfortunately, cast a speculative shadow over the field of cryonics.

But recently, for the first time ever in China, a woman has been cryogenically frozen. Zhan Wenlian died at the age of 49 from lung cancer and her husband, Gui Junmin, volunteered her for the cryonic procedure. Bothhe and his late wife wanted to donate her body to science to give back to society. He told Mirror UKthat hewas initially pitched the idea of cryonics with it being described as a life preservation project.

This procedure which has Wenlians body restingfacedownin 2,000 liters of liquid nitrogen was completed at theYinfeng Biological Group in Jinan. This project is the collaborative effortof the Yinfeng Biological Group, Qilu Hospital Shandong University and consultants from Alcor Life Extension Foundation, a nonprofit cryonics company based in the United States.

Even with all the faith many have in the procedure, the question remains: how scientifically possible is a project like this? Is this just an experiment to allow us to better understand human biology, orcould cryonics one day become a feasible option?

Cryonics is all about timing.The bodies of the deceased arecryogenically frozenimmediately after the heartstops beating. Freezing is a bit of a misleading term, because cryonic freezing is actually very specifically trying toavoidice crystal formation which damages the cells of the bodys tissues. Rapid cooling, rather than freezing, is a more accuratedescription of the process. A chemical cocktail of preservatives likeglycerol andpropandiol, in addition to antifreeze agents, are commonly used to get the body into a stable state where it wont be decaying, but also wont suffer damage from being stored at low temperatures for, conceivably, a very long time.

From there, the bodiesare given specific care that caters to the idea that death is a continuing process; one that can ultimately be reversed. The aim of cryonic preservation would be to one day be able to thaw the bodies and reanimate them at a cellular level preferably without too many epigenetic changes.

I tend to believe in new and emerging technologies, so I think it will be completely possible to revive her.

With ourcurrent understanding and technology, this process of reversingdeath so completely is just not possible. The closest kind of revival we have are themoments after clinical death where patients are revived by something such as cardiac defibrillation. Cryonics acts within this critical, albeit brief, period as well but works within the belief that death is a grey area. More of a processrather than a definite, final, event.

Just because we havent succeeded in reviving the dead yetdoesnt mean the field of cryonics isunnecessary or unimportant.This first case inChina is a major step forward for everyone researching inthe field of cryonics and those of us who may, one day, hope to benefit from advancements in it.

We may not be able to reverse death just yet,but it doesnt seem outof the realm of possibility to imagine that, with such wild scientific advancements underway, technology could one day allow it to be possible. Whether or not it does in our lifetimes, this most recent development is certainly a positive one.

Here is the original post:

For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism

This company freezes your body so that you could one day be resurrected – AsiaOne


AsiaOne
This company freezes your body so that you could one day be resurrected
AsiaOne
If you have around US$90,000 (S$122,733) to spare and are of a gambling disposition, perhaps your final journey should be to Australia. A company called Southern Cryonics is looking to open a facility in New South Wales this year that will allow its …

Read more from the original source:

This company freezes your body so that you could one day be resurrected – AsiaOne

Chinese woman cryogenically frozen with ‘COMPLETE possibility’ of … – Express.co.uk

Cryonics is the practice in which a body is frozen shortly after death with the hope, when technology catches up, they will be able to be revived.

Zhan Wenlian, who died of lung cancer aged 49 earlier this year, became the first person in China to be cryogenically frozen.

Ms Wenlians remains are currently in a giant tank filled with 2,000 litres of liquid nitrogen at Yinfeng Biological Group in Jinan, capital of East China’s Shandong Province.

The deceased was volunteered for the procedure by her husband Gui Junmin, who said that his late wife wanted to donate her body to science to “give back to society, according to The Mirror.

GETTY

The project was a collaboration between the Yinfeng Biological Group and from US firm Alcor Life Extension Foundation.

In cryonics, as soon as a persons heart stops beating, they must be rapidly cooled but not technically frozen.

If the person is frozen, their cells form ice crystals which is irreversible damage.

GETTY

A cocktail of chemicals like glycerol and propandiol, as well as antifreeze agents, are commonly used in the procedure so the body can be cooled without freezing.

However, there is no evidence that people will one day be able to be revived.

Director Jia Chusheng of Yinfeng Biological Group said that although there is a chance the procedure will not work, it gives the husband and wife hope for the future.

She said: [Zhan] and her family are clear about the risks and the possibility that the procedure might ultimately fail.

GETTY

“But as someone who has donated her body to science, she also gains hope of being revived one day.

Her husband is extremely hopeful, however, and even plans to have himself preserved when he dies so that he can be reunited with his wife.

1 of 10

Mr Junmin said: “I tend to believe in new and emerging technologies, so I think it will be completely possible to revive her.

“If my wife wakes up, she might be lonely. I need to keep her company.”

Read more here:

Chinese woman cryogenically frozen with ‘COMPLETE possibility’ of … – Express.co.uk

Chinese woman cryogenically frozen with ‘COMPLETE possibility’ of … – Express.co.uk

Cryonics is the practice in which a body is frozen shortly after death with the hope, when technology catches up, they will be able to be revived.

Zhan Wenlian, who died of lung cancer aged 49 earlier this year, became the first person in China to be cryogenically frozen.

Ms Wenlians remains are currently in a giant tank filled with 2,000 litres of liquid nitrogen at Yinfeng Biological Group in Jinan, capital of East China’s Shandong Province.

The deceased was volunteered for the procedure by her husband Gui Junmin, who said that his late wife wanted to donate her body to science to “give back to society, according to The Mirror.

GETTY

The project was a collaboration between the Yinfeng Biological Group and from US firm Alcor Life Extension Foundation.

In cryonics, as soon as a persons heart stops beating, they must be rapidly cooled but not technically frozen.

If the person is frozen, their cells form ice crystals which is irreversible damage.

GETTY

A cocktail of chemicals like glycerol and propandiol, as well as antifreeze agents, are commonly used in the procedure so the body can be cooled without freezing.

However, there is no evidence that people will one day be able to be revived.

Director Jia Chusheng of Yinfeng Biological Group said that although there is a chance the procedure will not work, it gives the husband and wife hope for the future.

She said: [Zhan] and her family are clear about the risks and the possibility that the procedure might ultimately fail.

GETTY

“But as someone who has donated her body to science, she also gains hope of being revived one day.

Her husband is extremely hopeful, however, and even plans to have himself preserved when he dies so that he can be reunited with his wife.

1 of 10

Mr Junmin said: “I tend to believe in new and emerging technologies, so I think it will be completely possible to revive her.

“If my wife wakes up, she might be lonely. I need to keep her company.”

Go here to see the original:

Chinese woman cryogenically frozen with ‘COMPLETE possibility’ of … – Express.co.uk

Freeze Frame: Lifting The Lid On Cryonics – Billionaire.com

SLIDESHOW: Cryostats are insulated tanks for long term patient storage in liquid nitrogen.

An estimated 2,500 bodies around the world have been frozen in the hope of some future resurrection.

If you have around US$90,000 to spare and are of a gambling disposition, perhaps your final journey should be to Australia. A company called Southern Cryonics is looking to open a facility in New South Wales this year that will allow its customers to freeze their bodies after death in the hope of one day being resurrected. If it goes ahead, it will make Australia only the third country, after the US and Russia, where such a service is available.

But, especially for those of a futurist bent perhaps, its as valid a thing to do with ones body as burial or cremation. Last year, a terminally ill 14-year-old girl in the UK became the first and only child so far to undergo the cryonic process. This is technically not freezing but vitrification, in which the body is treated with chemicals and chilled to super-cold temperatures so that molecules are locked in place and a solid is formed. An estimated 2,500 bodies around the world are now stored in this condition.

Supporters concede that the technology to revive the infinitely complex interactions between those molecules may never exist, but are nonetheless hopeful, pointing to shifting conceptions of what irreversible death actually is. If, for example, cessation of a heartbeat used to define it, now hearts can be re-started todays corpse may be tomorrows patient. They point to experiments such as that announced last year by 21st Century Medicine, which claimed to have successfully vitrified and recovered an entire mammalian brain for the first time, with the thawed rabbits brain found to have all of its synapses, cell membranes and intracellular structures intact.

Its not just cryonics. Stem-cell research, nano-tech, cloning, the science just keeps plugging away towards a future [of reanimating] that may or may not come to exist, says an upfront Dennis Kowalski, president of the Michigan-based Cryonics Institute. His company was launched just over 40 years ago to provide cryostasis services. Lots of things considered impossible not long ago are possible today, so we just dont know how cryonics will work out. For people who use the service its really a case of theres nothing to lose.

Naturally, not everyone is hopeful that such processes will ever work out for those in the chiller. The problem with cryonics is that the perception of it is largely shaped by companies offering a service based on something completely unproven, says Joo Pedro De Magalhes, biologist and principal investigator into life extension at the University of Liverpool, UK, and co-founder of the UK Cryonics and Cryopreservation Network. Youre talking about a fairly eccentric procedure that only a few people have signed up to and into which little reported research is being done. That said, I think the people providing these services do believe theres a chance it may work one day, although I would have to say theyre optimistic.

But this is not to say that living longer wont, in time, prove possible as a result of some other method; just that arguably this is more likely to be based around preserving a life that has not experienced death, rather than the promise of reanimating one after its demise. The chasm between the two is all the more pronounced given neurosciences still scant ideas as to what consciousness or mind is, let alone how it might be saved and rebooted; would the warmed and reanimated you be the you that died, or a mere simulacrum? Your body may well not be the same: many of those opting for cryo-preservation go for the freezing of just their brains.

Certainly while cryonics specifically may remain a largely unexplored field, Google is now investing in anti-ageing science, an area that, as De Magalhes puts it, now has fewer crackpots and more reputable scientists working in it, with stronger science behind it too. Indeed, as Yuval Noah Harari argues in his best-selling book Homo Deus, humanisms status as contemporary societys new religion of choice, combined with technological advances, makes some form of greatly extended lifespan inevitable for some generation to come. Whether this will be by melding man and machine, by genetic manipulation, by a form of existence in cyberspace or some other fix can only be speculated at, but everything about our civilisations recent development points to it becoming a reality.

Advances in medicine, after all, have greatly extended average longevity over the last century alone. With this has come a shift in perspective that sees death less as the natural end point to a life so much as a process of disease that could, and perhaps should, be tackled like any other disease that threatens existence. De Magalhes points out that for many working in the field it is less about the pursuit of immortality as of improved health.

After all, its not self-evident that we all want to live forever, and there are philosophical arguments for the idea that death is good, that its necessary to appreciate life, he says. But it is self-evident that nobody wants Alzheimers, for example. If you focus on retarding the problems of ageing then inevitably were going to live longer. The longevity we have now isnt normal; its already better than what we had not long ago. Extrapolate that to the future and in a century the length of time we live now might be considered pretty bad. One can envisage a time when we might live, if not forever, then perhaps thousands of years so much longer than we live now that it might feel like forever.

That, naturally, would bring with it profound changes to the way in which we perceive ourselves and to how the world operates and all the more so if living considerably longer became a possibility faster than society was able to inculcate the notion. How would such a long lifespan affect our sense of self? Would institutions and mores such as lifelong marriage and monogamy remain the norm? When would we retire? How would our relationships with the many subsequent generations of our family be shaped? How would population growth be managed? How would such long lives be funded?

Such questions are, for sure, of no concern to those currently in cryostasis. These people tend to be into sci-fi, and into science too, suggests Kowalski, who has signed up himself, his wife and children for cryonic services when the time comes. I think for a lot of them its not necessarily about the fear of death. Its more a fascination with the future. Theyre optimistic about what it will bring. Theyre more Star Trek than Terminator.

Original post:

Freeze Frame: Lifting The Lid On Cryonics – Billionaire.com

What is cryonics?

Cryonics is an effort to save lives by using temperatures so cold that a person beyond help by today’s medicine might be preserved for decades or centuries until a future medical technology can restore that person to full health. Cryonics is a second chance at life. It is the reasoned belief in the advancement of future medicinal technologies being able to cure things we cant today.

Many biological specimens, including whole insects, many types of human tissue including brain tissue, and human embryos have been cryogenically preserved, stored at liquid nitrogen temperature where all decay ceases, and revived. This leads scientists to believe that the same can be done with whole human bodies, and that any minimal harm can be reversed with future advancements in medicine.

Neurosurgeons often cool patients bodies so they can operate on aneurysms without damaging or rupturing the nearby blood vessels. Human embryos that are frozen in fertility clinics, defrosted, and implanted in a mothers uterus grow into perfectly normal human beings. This method isnt new or groundbreaking- successful cryopreservation of human embryos was first reported in 1983 by Trounson and Mohr with multicellular embryos that had been slow-cooled using dimethyl sulphoxide (DMSO).

And just in Feb. of 2016, there was a cryonics breakthrough when for the first time, scientists vitrified a rabbits brain and, after warming it back up, showed that it was in near perfect condition. This was the first time a cryopreservation was provably able to protect everything associated with learning and memory.

Visit link:

What is cryonics?

For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism

Preserving Life Through Cryonics

Cryonics is the practice of deep-freezing recently deceased bodies(or even just the brains of those who have recently died)in the hopes of one day reviving them. It has been the subject of serious scientific exploration and study as well as a fair share of pseudoscience, lore, and myth. Fictional accounts like Batmans Iceman, and the (untrue) rumors of Walt Disney being cryogenically frozen have, unfortunately, cast a speculative shadow over the field of cryonics.

But recently, for the first time ever in China, a woman has been cryogenically frozen. Zhan Wenlian died at the age of 49 from lung cancer and her husband, Gui Junmin, volunteered her for the cryonic procedure. Bothhe and his late wife wanted to donate her body to science to give back to society. He told Mirror UKthat hewas initially pitched the idea of cryonics with it being described as a life preservation project.

This procedure which has Wenlians body restingfacedownin 2,000 liters of liquid nitrogen was completed at theYinfeng Biological Group in Jinan. This project is the collaborative effortof the Yinfeng Biological Group, Qilu Hospital Shandong University and consultants from Alcor Life Extension Foundation, a nonprofit cryonics company based in the United States.

Even with all the faith many have in the procedure, the question remains: how scientifically possible is a project like this? Is this just an experiment to allow us to better understand human biology, orcould cryonics one day become a feasible option?

Cryonics is all about timing.The bodies of the deceased arecryogenically frozenimmediately after the heartstops beating. Freezing is a bit of a misleading term, because cryonic freezing is actually very specifically trying toavoidice crystal formation which damages the cells of the bodys tissues. Rapid cooling, rather than freezing, is a more accuratedescription of the process. A chemical cocktail of preservatives likeglycerol andpropandiol, in addition to antifreeze agents, are commonly used to get the body into a stable state where it wont be decaying, but also wont suffer damage from being stored at low temperatures for, conceivably, a very long time.

From there, the bodiesare given specific care that caters to the idea that death is a continuing process; one that can ultimately be reversed. The aim of cryonic preservation would be to one day be able to thaw the bodies and reanimate them at a cellular level preferably without too many epigenetic changes.

I tend to believe in new and emerging technologies, so I think it will be completely possible to revive her.

With ourcurrent understanding and technology, this process of reversingdeath so completely is just not possible. The closest kind of revival we have are themoments after clinical death where patients are revived by something such as cardiac defibrillation. Cryonics acts within this critical, albeit brief, period as well but works within the belief that death is a grey area. More of a processrather than a definite, final, event.

Just because we havent succeeded in reviving the dead yetdoesnt mean the field of cryonics isunnecessary or unimportant.This first case inChina is a major step forward for everyone researching inthe field of cryonics and those of us who may, one day, hope to benefit from advancements in it.

We may not be able to reverse death just yet,but it doesnt seem outof the realm of possibility to imagine that, with such wild scientific advancements underway, technology could one day allow it to be possible. Whether or not it does in our lifetimes, this most recent development is certainly a positive one.

Read more:

For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism

For The First Time Ever, a Woman in China Has Been Cryogenically … – DeathRattleSports.com

Cryonics is the practice ofdeep-freezing recently deceased bodies(or even justthe brains of thosewho have recently died)in the hopes of one day reviving them.

It has been the subject of serious scientific exploration and study as well as a fair share of pseudoscience, lore, and myth. Fictional accounts like Batmans Iceman, and the (untrue) rumours of Walt Disney being cryogenically frozen have cast a speculative shadow over the field of cryonics.

Butrecently, for the first time ever in China,a woman has been cryogenically frozen. Zhan Wenlian died at the age of 49 from lung cancer and her husband, Gui Junmin, volunteered her for the cryonic procedure.

Bothhe and his late wife wanted to donate her body to science to give back to society. He told TheMirror UKthat hewas initially pitchedthe idea of cryonicswith it being described as a life preservation project.

This procedure which has Wenlians body restingface downin 2,000 litres of liquid nitrogen was completed at theYinfeng Biological Group in Jinan.

This project is the collaborative effortof the Yinfeng Biological Group, Qilu Hospital Shandong University and consultants fromAlcor Life Extension Foundation, a nonprofit cryonics company based in the United States.

Even with all the faith many have in the procedure, the question remains: how scientifically possible is a project like this? Is this just an experiment to allow us to better understand human biology, orcould cryonics one day become a feasible option?

Cryonics isall about timing.The bodies of the deceased arecryogenically frozenimmediately after the heartstops beating.Freezing is a bit of a misleading term, because cryonic freezing is actually very specifically trying toavoidice crystal formation which damages the cells of the bodys tissues.

Rapid cooling, rather than freezing, is a more accuratedescription of the process.

A chemical cocktail of preservatives likeglycerol andpropandiol, in addition to antifreeze agents, are commonly used to get the body into a stable state where it wont be decaying, but also wont suffer damage from being stored at low temperatures for, conceivably, a very long time.

From there, the bodiesare given specific care that caters to the idea that death is a continuing process; one that can ultimately be reversed.

The aim of cryonic preservation would be to one day be able to thaw the bodies and reanimate them at a cellular level preferably without too many epigenetic changes.

I tend to believe in new and emerging technologies, so I think it will be completely possible to revive her.

With ourcurrent understanding and technology, this process of reversingdeath so completely is just not possible. The closest kind of revival we have are themoments after clinical death where patients are revived by something such as cardiac defibrillation.

Cryonics acts within this critical, albeit brief, period as well but works within the belief that death is a grey area. More of a processrather than a definite, final, event.

Just because we havent succeeded in reviving the dead yetdoesnt mean the field of cryonics isunnecessary or unimportant.This case inChina is a step forward for everyone researchingthe field of cryonics and those of us who hope to benefit from advancements in it.

We may not be able to reverse death just yet,but it doesnt seem outof the realm of possibility to imagine that, withsuch wild scientific advancements underway, technology could one day allow it to be possible.

Whether or not it does in our lifetimes, this most recent development is certainly an interesting one.

This article was originally published by Futurism. Read the original article.

Read more:

For The First Time Ever, a Woman in China Has Been Cryogenically … – DeathRattleSports.com

This company freezes your body so that you could one day be resurrected – AsiaOne


AsiaOne
This company freezes your body so that you could one day be resurrected
AsiaOne
If you have around US$90,000 (S$122,733) to spare and are of a gambling disposition, perhaps your final journey should be to Australia. A company called Southern Cryonics is looking to open a facility in New South Wales this year that will allow its …

See the rest here:

This company freezes your body so that you could one day be resurrected – AsiaOne

Cryonics – Wikipedia

For the study of the production of very low temperatures, see Cryogenics. For the low-temperature preservation of living tissue and organisms in general, see Cryopreservation. For the Hot Cross album, see Cryonics (album).

Cryonics (from Greek kryos meaning ‘cold’) is the low-temperature preservation (usually at 196C) of people who cannot be sustained by contemporary medicine, with the hope that resuscitation and restoration to full health may be possible in the far future.[1]Cryopreservation of humans is not reversible with present technology; cryonicists hope that medical advances will someday allow cryopreserved people to be revived.[2]

Cryonics is regarded with skepticism within the mainstream scientific community and is not part of normal medical practice. It is not known if it will ever be possible to revive a cryopreserved human being. Cryonics depends on beliefs that the cryonics patient has not experienced information-theoretic death.[3] Such views are at the speculative edge of medicine.[4]

Cryonics procedures can only begin after legal death, and cryonics “patients” are considered legally dead. Cryonics procedures ideally begin within minutes of cardiac arrest,[5] and use cryoprotectants to prevent ice formation during cryopreservation.[6] The first corpse to be cryopreserved was that of Dr. James Bedford in 1967.[7] As of 2014, about 250 bodies were cryopreserved in the United States, and 1,500 people had made arrangements for cryopreservation after their legal death.[8]

Long-term memory is stored in cell structures and molecules within the brain.[9] In surgeries on the aortic arch, hypothermia is used to cool the body while the heart is stopped; this is done primarily to spare the brain by slowing its metabolic rate, reducing the need for oxygen, and thus reducing damage from lack of oxygen. The metabolic rate can be reduced by around 50% at 28C, and by around 80% at 18C or profound hypothermia. By keeping the brain at around 25C (considered deep hypothermia), surgeries can stretch to be around a half-hour with very good neurological recovery rates; stretching that to 40 minutes increases the risk of short term and long term neurological damage.[10]

Cryonics goes further than the mainstream consensus that the brain doesn’t have to be continuously active to survive or retain memory. Cryonics controversially asserts that a human person survives even within an inactive brain that’s been badly damaged provided that original encoding of memory and personality can, in theory, be adequately inferred and reconstituted from structure that remains.[3][8][11] Cryonicists argue that as long as brain structure remains intact, there is no fundamental barrier, given our current understanding of physical law, to recovering its information content. Cryonicists argue that true “death” should be defined as irreversible loss of brain information critical to personal identity, rather than inability to resuscitate using current technology.[3] The cryonics argument that death doesn’t occur as long as brain structure remains intact and theoretically repairable has received some mainstream medical discussion in the context of the ethical concept of brain death and organ donation.[12][13][14]

Cryonics uses temperatures below 130C, called cryopreservation, in an attempt to preserve enough brain information to permit future revival of the cryopreserved person. Cryopreservation may be accomplished by freezing, freezing with cryoprotectant to reduce ice damage, or by vitrification to avoid ice damage. Even using the best methods, cryopreservation of whole bodies or brains is very damaging and irreversible with current technology.

Cryonics requires future technology to repair or regenerate tissue that is diseased, damaged, or missing. Brain repairs in particular will require analysis at the molecular level. This far-future technology is usually assumed to be nanomedicine based on molecular nanotechnology.[15][16][17] Biological repair methods[18] or mind uploading[19] have also been proposed.

Costs can include payment for medical personnel to be on call for death, vitrification, transportation in dry ice to a preservation facility, and payment into a trust fund intended to cover indefinite storage in liquid nitrogen and future revival costs.[20][21] As of 2011, U.S. cryopreservation costs can range from $28,000 to $200,000, and are often financed via life insurance.[20]KrioRus, which stores bodies communally in large dewars, charges $12,000 to $36,000 for the procedure.[22] Some patients opt to have only their head, rather than their whole body, cryopreserved. As of 2016, four facilities exist in the world to retain cryopreserved bodies; three are in the U.S., and one is in Russia.[2][23] As of 2014, about 250 people have been cryogenically preserved in the U.S., and around 1,500 more have signed up to be preserved.[8]

Long-term preservation of biological tissue can be achieved by cooling to temperatures below 130C.[24] Immersion in liquid nitrogen at a temperature of 196C (77 kelvins and 320.8F) is often used for convenience. Low temperature preservation of tissue is called cryopreservation. Contrary to popular belief, water that freezes during cryopreservation is usually water outside cells, not water inside cells. Cells don’t burst during freezing, but instead become dehydrated and compressed between ice crystals that surround them. Intracellular ice formation only occurs if the rate of freezing is faster than the rate of osmotic loss of water to the extracellular space.[24]

Without cryoprotectants, cell shrinkage and high salt concentrations during freezing usually prevent frozen cells from functioning again after thawing. In tissues and organs, ice crystals can also disrupt connections between cells that are necessary for organs to function.[25] The difficulties of recovering large animals and their individual organs from a frozen state have been long known. Attempts to recover frozen mammals by simply rewarming them were abandoned by 1957.[26] At present, only cells, tissues, and some small organs can be reversibly cryopreserved.[27][28]

When used at high concentrations, cryoprotectants can stop ice formation completely. Cooling and solidification without crystal formation is called vitrification.[29] The first cryoprotectant solutions able to vitrify at very slow cooling rates while still being compatible with whole organ survival were developed in the late 1990s by cryobiologists Gregory Fahy and Brian Wowk for the purpose of banking transplantable organs.[28][30][31] This has allowed animal brains to be vitrified, warmed back up, and examined for ice damage using light and electron microscopy. No ice crystal damage was found;[32] remaining cellular damage was due to dehydration and toxicity of the cryoprotectant solutions. Large vitrified organs tend to develop fractures during cooling,[33] a problem worsened by the large tissue masses and very low temperatures of cryonics.[34]

The use of vitrification rather than freezing for cryonics was anticipated in 1986, when K. Eric Drexler proposed a technique called fixation and vitrification, anticipating reversal by molecular nanotechnology.[35] In 2016, Robert L. McIntyre and Gregory Fahy at the cryobiology research company 21st Century Medicine, Inc. won the Small Animal Brain Preservation Prize of the Brain Preservation Foundation by demonstrating to the satisfaction of neuroscientist judges that a particular implementation of fixation and vitrification called aldehyde-stabilized cryopreservation[36] could preserve a rabbit brain in “near perfect” condition at 135C, with the cell membranes, synapses, and intracellular structures intact in electron micrographs.[37][38][39] Brain Preservation Foundation President, Ken Hayworth, said, “This result directly answers a main skeptical and scientific criticism against cryonicsthat it does not provably preserve the delicate synaptic circuitry of the brain.[40] However the price paid for perfect preservation as seen by microscopy was tying up all protein molecules with chemical crosslinks, completely eliminating biological viability. Actual cryonics organizations use vitrification without a chemical fixation step,[41] sacrificing some structural preservation quality for less damage at the molecular level. Some scientists, like Joao Pedro Magalhaes, have questioned whether using a deadly chemical for fixation eliminates the possibility of biological revival, making chemical fixation unsuitable for cryonics.[42]

While preservation of both structure and function has been possible for brain slices using vitrification,[43] this goal remains elusive for whole brains. In absence of a revived brain, or brain simulation from somehow scanning a preserved brain, the adequacy of present vitrification technology (with or without fixation) for preserving the anatomical and molecular basis of long-term memory as required by cryonics is still unproven.

Outside the cryonics community, many scientists have a blanket skepticism toward existing preservation methods. Cryobiologist Dayong Gao states that “we simply don’t know if (subjects have) been damaged to the point where they’ve ‘died’ during vitrification because the subjects are now inside liquid nitrogen canisters.” Biochemist Ken Storey argues (based on experience with organ transplants), that “even if you only wanted to preserve the brain, it has dozens of different areas, which would need to be cryopreserved using different protocols.”[44]

Those who believe that revival may someday be possible generally look toward advanced bioengineering, molecular nanotechnology,[45] or nanomedicine[17] as key technologies. Revival would require repairing damage from lack of oxygen, cryoprotectant toxicity, thermal stress (fracturing), freezing in tissues that do not successfully vitrify, and reversing the effects that caused death. In many cases extensive tissue regeneration would be necessary.[46]

According to Cryonics Institute president Ben Best, cryonics revival may be similar to a last in, first out process. People cryopreserved in the future, with better technology, may require less advanced technology to be revived because they will have been cryopreserved with better technology that caused less damage to tissue. In this view, preservation methods would get progressively better until eventually they are demonstrably reversible, after which medicine would begin to reach back and revive people cryopreserved by more primitive methods.[47]

Alternatively, some cryonicists propose that a brain could be electronically scanned and uploaded into a digital computer using hypothetical far-future technology. For some, this raises a philosophical issue: would such an upload “actually be you”; would it be “a new person who is like you but whose conscious experience you dont have access to”; or would it merely be a “philosophical zombie”?[2][21]

Historically, a person had little control regarding how their body was treated after death as religion had jurisdiction over the disposal of the body.[48] However, with the rise of secularism, courts began to exercise jurisdiction over the body and use discretion in carrying out of the wishes of the deceased person.[48] Most countries legally treat preserved individuals as deceased persons because of laws that forbid vitrifying someone who is medically alive.[47] Cryonics providers tend to be treated as medical research institutes. In France, cryonics is not considered a legal mode of body disposal;[49] only burial, cremation, and formal donation to science are allowed. However, bodies may legally be shipped to other countries for cryonic freezing.[50] As of 2015, the Canadian province of British Columbia prohibits the sale of arrangements for body preservation based on cryonics.[51] In Russia, cryonics falls outside both the medical industry and the funeral services industry, making it easier in Russia than in the U.S. to get hospitals and morgues to release cryonics candidates.[22] In London in 2016, the English High Court ruled in favor of a mother’s right to seek cryopreservation of her terminally ill 14-year-old daughter contrary to the father’s wishes. The decision was made on the basis that the case represented a conventional dispute over the disposal of the girl’s body, although the judge urged ministers to seek “proper regulation” for the future of cryonic preservation following concerns raised by the hospital about the competence and professionalism of the team that conducted the preservation procedures.[52] In Alcor Life Extension Foundation v. Richardson, the Iowa Court of Appeals ordered for the disinterment of Richardson, who was buried against his wishes for cryopreservation.[48][53]

Writing in Bioethics, David Shaw examines the ethical status of cryonics. The arguments against it include changing the concept of death, the expense of preservation and revival, lack of scientific advancement to permit revival, temptation to use premature euthanasia, and failure due to catastrophe. Arguments in favor of cryonics include the potential benefit to society, the prospect of immortality, and the benefits associated with avoiding death. Shaw explores the relatively minor expense and the potential payoff, and applies it to an adapted version of Pascal’s Wager.[54]

In 1922, Alexander Yaroslavsky, member of Soviet immortalists-biocosmists movement, wrote the poem “Anabiosys”. However, the modern era of cryonics began in 1962 when Michigan college physics teacher Robert Ettinger proposed in a privately published book, The Prospect of Immortality,[55] that freezing people may be a way to reach future medical technology. (The book was republished in 2005 and remains in print.) Even though freezing a person is apparently fatal, Ettinger argued that what appears to be fatal today may be reversible in the future. He applied the same argument to the process of dying itself, saying that the early stages of clinical death may be reversible in the future. Combining these two ideas, he suggested that freezing recently deceased people may be a way to save lives. In 1955 James Lovelock was able to reanimate rats frozen at 0 Celsius using microwave diathermy.[56]

Slightly before Ettingers book was complete, Evan Cooper[57] (writing as Nathan Duhring) privately published a book called Immortality: Physically, Scientifically, Now that independently suggested the same idea. Cooper founded the Life Extension Society (LES) in 1964 to promote freezing people. Ettinger came to be credited as the originator of cryonics, perhaps because his book was republished by Doubleday in 1964 on recommendation of Isaac Asimov and Fred Pohl, and received more publicity. Ettinger also stayed with the movement longer.[citation needed]

The first person to be cryopreserved was James Bedford, in 1967. In the U.S., cryonics took a reputation hit around the 1970s: the Cryonics Society of California, led by a former TV repairman named Robert Nelson with no scientific background, ran out of money to maintain cryopreservation of existing patients; Nelson was sued for allowing nine bodies to decompose.[22]

According to The New York Times cryonicists are predominantly nonreligious white males, outnumbering women by about three to one.[58] According to The Guardian, as of 2008, while most cryonicists used to be young, male and “geeky” recent demographics have shifted slightly towards whole families.[47]

In 2015 Du Hong, a 61-year-old female writer of children’s literature, became the first known Chinese national to be cryopreserved.[59]

Some scientists have expressed skepticism about cryonics in media sources,[22] however the number of peer-reviewed papers on cryonics is limited because its speculative aspects place it outside of the focus of most academic fields.[8] While most neuroscientists agree that all the subtleties of a human mind are contained in its anatomical structure,[60] few neuroscientists will comment directly upon the topic of cryonics due to its speculative nature. Individuals who intend to be frozen are often “looked at as a bunch of kooks”, despite many of them being scientists and doctors.[61]

At the extreme, some people are openly hostile to the idea of cryonics.[2]

According to cryonicist Aschwin de Wolf and others, cryonics can often produce intense hostility from spouses who are not cryonicists. James Hughes, the executive director of the pro-life-extension Institute for Ethics and Emerging Technologies, chooses not to personally sign up for cryonics, calling it a worthy experiment but stating laconically that “I value my relationship with my wife.”[58]

Cryobiologist Dayong Gao states that “People can always have hope that things will change in the future, but there is no scientific foundation supporting cryonics at this time.”[44] Alcor disagrees, stating that “There are no known credible technical arguments that lead one to conclude that cryonics, carried out under good conditions today, would not work.”[20]

Many people assert there would be no point in being revived in the far future, if their friends and families are dead.[54] While it’s universally agreed that “personal identity” is uninterrupted when brain activity temporarily ceases during incidents of accidental drowning (where people have been restored to normal functioning after being completely submerged in cold water for up to 66 minutes), some people express concern that a centuries-long cryopreservation might interrupt their conception of personal identity, such that the revived person would “not be you”.[8]

Suspended animation is a popular theme in science fiction and fantasy settings, appearing in comic books, films, literature, and television. A survey in Germany found that about half of the respondents were familiar with cryonics, and about half of those familiar with cryonics had learned of the subject from films or television.[62] Some commonly known examples of cryonics being used in popular culture include Vanilla Sky, Fallout 4, Futurama, Passengers and Nip/Tuck.[63]

Among the cryopreserved are L. Stephen Coles (in 2014),[64]Hal Finney[65] (in 2014), and Ted Williams.[66]

The urban legend suggesting Walt Disney was cryopreserved is false; he was cremated and interred at Forest Lawn Memorial Park Cemetery.[67]Robert A. Heinlein, who wrote enthusiastically of the concept in The Door into Summer (serialized in 1956), was cremated and had his ashes distributed over the Pacific Ocean. Timothy Leary was a long-time cryonics advocate and signed up with a major cryonics provider, but he changed his mind shortly before his death, and was not cryopreserved.[68]

See the article here:

Cryonics – Wikipedia

For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism

Preserving Life Through Cryonics

Cryonics is the practice of deep-freezing recently deceased bodies(or even just the brains of those who have recently died)in the hopes of one day reviving them. It has been the subject of serious scientific exploration and study as well as a fair share of pseudoscience, lore, and myth. Fictional accounts like Batmans Iceman, and the (untrue) rumors of Walt Disney being cryogenically frozen have, unfortunately, cast a speculative shadow over the field of cryonics.

But recently, for the first time ever in China, a woman has been cryogenically frozen. Zhan Wenlian died at the age of 49 from lung cancer and her husband, Gui Junmin, volunteered her for the cryonic procedure. Bothhe and his late wife wanted to donate her body to science to give back to society. He told Mirror UKthat hewas initially pitched the idea of cryonics with it being described as a life preservation project.

This procedure which has Wenlians body restingfacedownin 2,000 liters of liquid nitrogen was completed at theYinfeng Biological Group in Jinan. This project is the collaborative effortof the Yinfeng Biological Group, Qilu Hospital Shandong University and consultants from Alcor Life Extension Foundation, a nonprofit cryonics company based in the United States.

Even with all the faith many have in the procedure, the question remains: how scientifically possible is a project like this? Is this just an experiment to allow us to better understand human biology, orcould cryonics one day become a feasible option?

Cryonics is all about timing.The bodies of the deceased arecryogenically frozenimmediately after the heartstops beating. Freezing is a bit of a misleading term, because cryonic freezing is actually very specifically trying toavoidice crystal formation which damages the cells of the bodys tissues. Rapid cooling, rather than freezing, is a more accuratedescription of the process. A chemical cocktail of preservatives likeglycerol andpropandiol, in addition to antifreeze agents, are commonly used to get the body into a stable state where it wont be decaying, but also wont suffer damage from being stored at low temperatures for, conceivably, a very long time.

From there, the bodiesare given specific care that caters to the idea that death is a continuing process; one that can ultimately be reversed. The aim of cryonic preservation would be to one day be able to thaw the bodies and reanimate them at a cellular level preferably without too many epigenetic changes.

I tend to believe in new and emerging technologies, so I think it will be completely possible to revive her.

With ourcurrent understanding and technology, this process of reversingdeath so completely is just not possible. The closest kind of revival we have are themoments after clinical death where patients are revived by something such as cardiac defibrillation. Cryonics acts within this critical, albeit brief, period as well but works within the belief that death is a grey area. More of a processrather than a definite, final, event.

Just because we havent succeeded in reviving the dead yetdoesnt mean the field of cryonics isunnecessary or unimportant.This first case inChina is a major step forward for everyone researching inthe field of cryonics and those of us who may, one day, hope to benefit from advancements in it.

We may not be able to reverse death just yet,but it doesnt seem outof the realm of possibility to imagine that, with such wild scientific advancements underway, technology could one day allow it to be possible. Whether or not it does in our lifetimes, this most recent development is certainly a positive one.

Read more from the original source:

For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism

Freeze Frame: Lifting The Lid On Cryonics – Billionaire.com

SLIDESHOW: Cryostats are insulated tanks for long term patient storage in liquid nitrogen.

An estimated 2,500 bodies around the world have been frozen in the hope of some future resurrection.

If you have around US$90,000 to spare and are of a gambling disposition, perhaps your final journey should be to Australia. A company called Southern Cryonics is looking to open a facility in New South Wales this year that will allow its customers to freeze their bodies after death in the hope of one day being resurrected. If it goes ahead, it will make Australia only the third country, after the US and Russia, where such a service is available.

But, especially for those of a futurist bent perhaps, its as valid a thing to do with ones body as burial or cremation. Last year, a terminally ill 14-year-old girl in the UK became the first and only child so far to undergo the cryonic process. This is technically not freezing but vitrification, in which the body is treated with chemicals and chilled to super-cold temperatures so that molecules are locked in place and a solid is formed. An estimated 2,500 bodies around the world are now stored in this condition.

Supporters concede that the technology to revive the infinitely complex interactions between those molecules may never exist, but are nonetheless hopeful, pointing to shifting conceptions of what irreversible death actually is. If, for example, cessation of a heartbeat used to define it, now hearts can be re-started todays corpse may be tomorrows patient. They point to experiments such as that announced last year by 21st Century Medicine, which claimed to have successfully vitrified and recovered an entire mammalian brain for the first time, with the thawed rabbits brain found to have all of its synapses, cell membranes and intracellular structures intact.

Its not just cryonics. Stem-cell research, nano-tech, cloning, the science just keeps plugging away towards a future [of reanimating] that may or may not come to exist, says an upfront Dennis Kowalski, president of the Michigan-based Cryonics Institute. His company was launched just over 40 years ago to provide cryostasis services. Lots of things considered impossible not long ago are possible today, so we just dont know how cryonics will work out. For people who use the service its really a case of theres nothing to lose.

Naturally, not everyone is hopeful that such processes will ever work out for those in the chiller. The problem with cryonics is that the perception of it is largely shaped by companies offering a service based on something completely unproven, says Joo Pedro De Magalhes, biologist and principal investigator into life extension at the University of Liverpool, UK, and co-founder of the UK Cryonics and Cryopreservation Network. Youre talking about a fairly eccentric procedure that only a few people have signed up to and into which little reported research is being done. That said, I think the people providing these services do believe theres a chance it may work one day, although I would have to say theyre optimistic.

But this is not to say that living longer wont, in time, prove possible as a result of some other method; just that arguably this is more likely to be based around preserving a life that has not experienced death, rather than the promise of reanimating one after its demise. The chasm between the two is all the more pronounced given neurosciences still scant ideas as to what consciousness or mind is, let alone how it might be saved and rebooted; would the warmed and reanimated you be the you that died, or a mere simulacrum? Your body may well not be the same: many of those opting for cryo-preservation go for the freezing of just their brains.

Certainly while cryonics specifically may remain a largely unexplored field, Google is now investing in anti-ageing science, an area that, as De Magalhes puts it, now has fewer crackpots and more reputable scientists working in it, with stronger science behind it too. Indeed, as Yuval Noah Harari argues in his best-selling book Homo Deus, humanisms status as contemporary societys new religion of choice, combined with technological advances, makes some form of greatly extended lifespan inevitable for some generation to come. Whether this will be by melding man and machine, by genetic manipulation, by a form of existence in cyberspace or some other fix can only be speculated at, but everything about our civilisations recent development points to it becoming a reality.

Advances in medicine, after all, have greatly extended average longevity over the last century alone. With this has come a shift in perspective that sees death less as the natural end point to a life so much as a process of disease that could, and perhaps should, be tackled like any other disease that threatens existence. De Magalhes points out that for many working in the field it is less about the pursuit of immortality as of improved health.

After all, its not self-evident that we all want to live forever, and there are philosophical arguments for the idea that death is good, that its necessary to appreciate life, he says. But it is self-evident that nobody wants Alzheimers, for example. If you focus on retarding the problems of ageing then inevitably were going to live longer. The longevity we have now isnt normal; its already better than what we had not long ago. Extrapolate that to the future and in a century the length of time we live now might be considered pretty bad. One can envisage a time when we might live, if not forever, then perhaps thousands of years so much longer than we live now that it might feel like forever.

That, naturally, would bring with it profound changes to the way in which we perceive ourselves and to how the world operates and all the more so if living considerably longer became a possibility faster than society was able to inculcate the notion. How would such a long lifespan affect our sense of self? Would institutions and mores such as lifelong marriage and monogamy remain the norm? When would we retire? How would our relationships with the many subsequent generations of our family be shaped? How would population growth be managed? How would such long lives be funded?

Such questions are, for sure, of no concern to those currently in cryostasis. These people tend to be into sci-fi, and into science too, suggests Kowalski, who has signed up himself, his wife and children for cryonic services when the time comes. I think for a lot of them its not necessarily about the fear of death. Its more a fascination with the future. Theyre optimistic about what it will bring. Theyre more Star Trek than Terminator.

See original here:

Freeze Frame: Lifting The Lid On Cryonics – Billionaire.com

What is cryonics?

Cryonics is an effort to save lives by using temperatures so cold that a person beyond help by today’s medicine might be preserved for decades or centuries until a future medical technology can restore that person to full health. Cryonics is a second chance at life. It is the reasoned belief in the advancement of future medicinal technologies being able to cure things we cant today.

Many biological specimens, including whole insects, many types of human tissue including brain tissue, and human embryos have been cryogenically preserved, stored at liquid nitrogen temperature where all decay ceases, and revived. This leads scientists to believe that the same can be done with whole human bodies, and that any minimal harm can be reversed with future advancements in medicine.

Neurosurgeons often cool patients bodies so they can operate on aneurysms without damaging or rupturing the nearby blood vessels. Human embryos that are frozen in fertility clinics, defrosted, and implanted in a mothers uterus grow into perfectly normal human beings. This method isnt new or groundbreaking- successful cryopreservation of human embryos was first reported in 1983 by Trounson and Mohr with multicellular embryos that had been slow-cooled using dimethyl sulphoxide (DMSO).

And just in Feb. of 2016, there was a cryonics breakthrough when for the first time, scientists vitrified a rabbits brain and, after warming it back up, showed that it was in near perfect condition. This was the first time a cryopreservation was provably able to protect everything associated with learning and memory.

Read the rest here:

What is cryonics?

Chinese woman cryogenically frozen with ‘COMPLETE possibility’ of … – Express.co.uk

Cryonics is the practice in which a body is frozen shortly after death with the hope, when technology catches up, they will be able to be revived.

Zhan Wenlian, who died of lung cancer aged 49 earlier this year, became the first person in China to be cryogenically frozen.

Ms Wenlians remains are currently in a giant tank filled with 2,000 litres of liquid nitrogen at Yinfeng Biological Group in Jinan, capital of East China’s Shandong Province.

The deceased was volunteered for the procedure by her husband Gui Junmin, who said that his late wife wanted to donate her body to science to “give back to society, according to The Mirror.

GETTY

The project was a collaboration between the Yinfeng Biological Group and from US firm Alcor Life Extension Foundation.

In cryonics, as soon as a persons heart stops beating, they must be rapidly cooled but not technically frozen.

If the person is frozen, their cells form ice crystals which is irreversible damage.

GETTY

A cocktail of chemicals like glycerol and propandiol, as well as antifreeze agents, are commonly used in the procedure so the body can be cooled without freezing.

However, there is no evidence that people will one day be able to be revived.

Director Jia Chusheng of Yinfeng Biological Group said that although there is a chance the procedure will not work, it gives the husband and wife hope for the future.

She said: [Zhan] and her family are clear about the risks and the possibility that the procedure might ultimately fail.

GETTY

“But as someone who has donated her body to science, she also gains hope of being revived one day.

Her husband is extremely hopeful, however, and even plans to have himself preserved when he dies so that he can be reunited with his wife.

1 of 10

Mr Junmin said: “I tend to believe in new and emerging technologies, so I think it will be completely possible to revive her.

“If my wife wakes up, she might be lonely. I need to keep her company.”

Read more from the original source:

Chinese woman cryogenically frozen with ‘COMPLETE possibility’ of … – Express.co.uk

This company freezes your body so that you could one day be resurrected – AsiaOne


AsiaOne
This company freezes your body so that you could one day be resurrected
AsiaOne
If you have around US$90,000 (S$122,733) to spare and are of a gambling disposition, perhaps your final journey should be to Australia. A company called Southern Cryonics is looking to open a facility in New South Wales this year that will allow its …

Read more:

This company freezes your body so that you could one day be resurrected – AsiaOne

How to live forever – TechRadar

Humans have wanted to live forever for as long as we’ve lived at all. It’s an obsession that stretches back so far that it feels like it’s somehow hard-coded into our DNA. Over the years, immortality (to a greater or lesser extent) has been promised by everyone from religions and cults to the cosmetics industry, big tech companies and questionable food blogs.

It’s also a staple of fiction, all the way back to the earliest surviving great work of literature. The Epic of Gilgamesh, carved onto stone tablets in 2100 BC, depicts its titular king hunting for the secret of eternal life, which he finds in a plant that lives at at the bottom of the sea. He collects the plant by roping stones to his feet, but then a snake steals it while he’s having a pre-immortality bath. Gilgamesh has a little cry, then gives up.

A cuneiform tablet containing part of The Epic of Gilgamesh.

The reason why we age is still the subject of major scientific debate, but it basically boils down to damage accumulating in our cells throughout our lives, which eventually kills us. By slowing that damage – first by making tools, then controlling fire, inventing writing, trade, agriculture, logic, the scientific method, the industrial revolution, democracy and so on, we’ve managed to massively increase human life expectancy.

There’s a common misconception that to live forever we need to somehow pause the ageing process. We don’t. We just need to increase the rate at which our lifespans are lengthening. Human lifespan has been lengthening at a constant rate of about two years per decade for the last 200 years. If we can speed that up past the rate at which we age then we hit what futurist Aubrey de Grey calls “longevity escape velocity” – the point we become immortal.

There’s a common misconception that to live forever we need to somehow pause the ageing process. We don’t. We just need to increase the rate at which our lifespans are lengthening.

That all sounds rather easy, and of course it’s not quite that simple. It’s all we can do at the moment to keep up with the Moore’s Law of increasing lifespans. But with a major research effort, coordinated around the world, who knows? Scientific history is filled with fields that ticked along slowly and then suddenly, massively, accelerated. Computer science is one. Genetics is another recent example.

To understand what we need to do to hit longevity escape velocity, it’s worth looking at how life expectancy has increased in recent history. The late statistician Hans Rosling made a powerful case that average lifespans rise alongside per capita income. Take a couple of minutes to watch this video and you’ll be convinced:

Reducing the gap between the global rich and poor, therefore, is probably the fastest way to boost the world average life expectancy figure, but it’s limited. And it won’t do much for people in rich countries.

To boost the lifespans of the people living in countries that are already pretty wealthy, we need to look closer at the countries that are forecast to have the highest life expectancies in the coming years. A study published earlier this year in the Lancet shows what life expectancy might look like in 2030 in 35 industrialised countries, using an amalgamation of 21 different forecasting models.

South Korea tops the chart with women living on average beyond 90, while France, Japan, Switzerland and Australia are not far behind. Most of the countries at the top of the chart have high-quality healthcare provision, low infant deaths, and low smoking and road traffic injury rates. Fewer people are overweight or obese. The US, meanwhile, is projected to see only a modest rise – due to a lack of healthcare access, and high rates of obesity, child mortality and homicides.

The study results are interesting, not only because they’re the best possible guess at our future but because they clearly show how social policies make a massive difference to how long people live. There are unknowns, of course – no-one could have predicted the 80s AIDS epidemic, for example, and no doubt further pandemics lurk in humanity’s future. But ban smoking, fight obesity, and introduce autonomous cars and personalised medicine, and you’ll see lifespans rise.

The US is projected to see only a modest rise in lifespan – due to a lack of healthcare access, and high rates of obesity, child mortality and homicides.

The other interesting thing is that the study’s results are a shot across the bows of scientists who claim that there are hard limits to human lifespan.

“As recently as the turn of the century, many researchers believed that life expectancy would never surpass 90 years, lead author Majid Ezzati of Imperial College London told the Guardian back in February.

That prediction mirrors another, published in Nature in October 2016, that concluded that the upper limit of human age is stuck at about 115 years.

“By analysing global demographic data, we show that improvements in survival with age tend to decline after age 100, and that the age at death of the worlds oldest person has not increased since the 1990s,” wrote the authors – Xiao Dong, Brandon Milholland & Jan Vijg.

“Our results strongly suggest that the maximum lifespan of humans is fixed and subject to natural constraints.”

The maximum length of a human lifespan remains up for debate.

Other researchers, however, disagree. Bryan G. Hughes & Siegfried Hekimi wrote in the same journal a few months later that their analysis showed that there are many possible maximum lifespan trajectories.

We just dont know what the age limit might be. In fact, by extending trend lines, we can show that maximum and average lifespans, could continue to increase far into the foreseeable future, Hekimi said.

Three hundred years ago, many people lived only short lives. If we would have told them that one day most humans might live up to 100, they would have said we were crazy.

That’s all big-picture stuff, so let’s dive down to a more personal level. Assuming that you can’t change your genetics or your life up until the point that you’re currently at, what can you personally do to live longer?

Here’s the list: Don’t smoke. Exercise your body and mind on a daily basis. Eat foods rich in whole grains, vegetables, fruits, and unsaturated fat. Don’t drink too much alcohol. Get your blood pressure checked. Chop out sources of stress and anxiety in your life. Travel by train. Stay in school. Think positive. Cultivate a strong social group. Don’t sit for long periods of time. Make sure you get enough calcium and vitamin D. Keep your weight at a healthy level. And don’t go to hospital if you can help it – hospitals are dangerous places.

All of those things have been correlated with increased lifespan in scientific studies. And they’re all pretty easy and cheap to do. If you want to maximise your longevity, then that’s your to-do list. But there are also strategies that have a little less scientific merit. The ones that people with too much money pursue when they realise they haven’t been following any of the above for most of their life.

Inside the Cryonics Institute.

Cryonics is probably the most popular. First proposed in the 1960s by US academic Robert Ettinger in his book “The Prospect of Immortality”, it involves freezing the body as soon as possible after death in a tube kept at -196C, along with detailed notes of what they died of. The idea is that when medicine has invented a cure for that ailment, the corpse can be thawed and reanimated.

Calling someone dead is merely medicines way of excusing itself from resuscitation problems it cannot fix today, reads the website of top cryogenics firm Alcor.

The problem is the brain. First, it’s so dense and well-protected that it’s extremely difficult for the cryonics chemicals to penetrate it. It’s almost impossible that it doesn’t get damaged in the freezing process.

The 21,000,000,000 neurons and ~1,000,000,000,000,000 synapses in the human brain means that it’ll be a while until we have the computational resources to map it.

Secondly, your neurons die quickly – even if you’re immersed within minutes of death, you’re still likely to suffer substantial brain damage. To which cryonics proponents argue: “What do I have to lose?” If the choice is between probably never waking up again and never waking up again, and it’s your money to spend, then why not give it a shot?

An alternative to deep freeze is storing your brain in a computer. Not literally a lump of grey matter, but a database detailing in full all of the connections between the neurons in your brain that make you you (known as your connectome). Future doctors could then either rewire a real or artificial brain to match that data, resurrecting you in a new body (or perhaps even as an artificial intelligence).

A close look at a slice of mouse brain. Credit: Robert Cudmore

So far, we’ve only managed to map the full connectome of one animal – the roundworm C. elegans. Despite the worm’s mere 302 neurons and 7,500 or so synapses, the resulting data is about 12GB in size – you can download it in full at the Open Connectome Project, and even install it in a robot, which will then act like a worm.

Unfortunately the human brain is a somewhat larger undertaking. The Human Connectome Project is making a start, and AI is helping, but the 21,000,000,000 neurons and ~1,000,000,000,000,000 synapses in the human brain means that it’ll be a while until we have the computational resources to get it done. It’s worth noting that this isn’t an unassailable goal, especially if we can somehow figure out which bits are actually important to our personality and who we are as individuals and which bits are just used to remember the lyrics of Spice Girls songs.

For now, though, my recommendation would be to stick to the list of simple life extension strategies above. It’s probable that in time we’ll have new ways of augmenting our bodies that will extend our lifespans (we’ve already started with cyborg technology – just look at pacemakers and artificial hips).

But if you want to be at the front of the waiting list then you’ll need to arrive at that point with as youthful a body as possible.

See the article here:

How to live forever – TechRadar

Cryonics – Wikipedia

For the study of the production of very low temperatures, see Cryogenics. For the low-temperature preservation of living tissue and organisms in general, see Cryopreservation. For the Hot Cross album, see Cryonics (album).

Cryonics (from Greek kryos meaning ‘cold’) is the low-temperature preservation (usually at 196C) of people who cannot be sustained by contemporary medicine, with the hope that resuscitation and restoration to full health may be possible in the far future.[1]Cryopreservation of humans is not reversible with present technology; cryonicists hope that medical advances will someday allow cryopreserved people to be revived.[2]

Cryonics is regarded with skepticism within the mainstream scientific community and is not part of normal medical practice. It is not known if it will ever be possible to revive a cryopreserved human being. Cryonics depends on beliefs that the cryonics patient has not experienced information-theoretic death.[3] Such views are at the speculative edge of medicine.[4]

Cryonics procedures can only begin after legal death, and cryonics “patients” are considered legally dead. Cryonics procedures ideally begin within minutes of cardiac arrest,[5] and use cryoprotectants to prevent ice formation during cryopreservation.[6] The first corpse to be cryopreserved was that of Dr. James Bedford in 1967.[7] As of 2014, about 250 bodies were cryopreserved in the United States, and 1,500 people had made arrangements for cryopreservation after their legal death.[8]

Long-term memory is stored in cell structures and molecules within the brain.[9] In surgeries on the aortic arch, hypothermia is used to cool the body while the heart is stopped; this is done primarily to spare the brain by slowing its metabolic rate, reducing the need for oxygen, and thus reducing damage from lack of oxygen. The metabolic rate can be reduced by around 50% at 28C, and by around 80% at 18C or profound hypothermia. By keeping the brain at around 25C (considered deep hypothermia), surgeries can stretch to be around a half-hour with very good neurological recovery rates; stretching that to 40 minutes increases the risk of short term and long term neurological damage.[10]

Cryonics goes further than the mainstream consensus that the brain doesn’t have to be continuously active to survive or retain memory. Cryonics controversially asserts that a human person survives even within an inactive brain that’s been badly damaged provided that original encoding of memory and personality can, in theory, be adequately inferred and reconstituted from structure that remains.[3][8][11] Cryonicists argue that as long as brain structure remains intact, there is no fundamental barrier, given our current understanding of physical law, to recovering its information content. Cryonicists argue that true “death” should be defined as irreversible loss of brain information critical to personal identity, rather than inability to resuscitate using current technology.[3] The cryonics argument that death doesn’t occur as long as brain structure remains intact and theoretically repairable has received some mainstream medical discussion in the context of the ethical concept of brain death and organ donation.[12][13][14]

Cryonics uses temperatures below 130C, called cryopreservation, in an attempt to preserve enough brain information to permit future revival of the cryopreserved person. Cryopreservation may be accomplished by freezing, freezing with cryoprotectant to reduce ice damage, or by vitrification to avoid ice damage. Even using the best methods, cryopreservation of whole bodies or brains is very damaging and irreversible with current technology.

Cryonics requires future technology to repair or regenerate tissue that is diseased, damaged, or missing. Brain repairs in particular will require analysis at the molecular level. This far-future technology is usually assumed to be nanomedicine based on molecular nanotechnology.[15][16][17] Biological repair methods[18] or mind uploading[19] have also been proposed.

Costs can include payment for medical personnel to be on call for death, vitrification, transportation in dry ice to a preservation facility, and payment into a trust fund intended to cover indefinite storage in liquid nitrogen and future revival costs.[20][21] As of 2011, U.S. cryopreservation costs can range from $28,000 to $200,000, and are often financed via life insurance.[20]KrioRus, which stores bodies communally in large dewars, charges $12,000 to $36,000 for the procedure.[22] Some patients opt to have only their head, rather than their whole body, cryopreserved. As of 2016, four facilities exist in the world to retain cryopreserved bodies; three are in the U.S., and one is in Russia.[2][23] As of 2014, about 250 people have been cryogenically preserved in the U.S., and around 1,500 more have signed up to be preserved.[8]

Long-term preservation of biological tissue can be achieved by cooling to temperatures below 130C.[24] Immersion in liquid nitrogen at a temperature of 196C (77 kelvins and 320.8F) is often used for convenience. Low temperature preservation of tissue is called cryopreservation. Contrary to popular belief, water that freezes during cryopreservation is usually water outside cells, not water inside cells. Cells don’t burst during freezing, but instead become dehydrated and compressed between ice crystals that surround them. Intracellular ice formation only occurs if the rate of freezing is faster than the rate of osmotic loss of water to the extracellular space.[24]

Without cryoprotectants, cell shrinkage and high salt concentrations during freezing usually prevent frozen cells from functioning again after thawing. In tissues and organs, ice crystals can also disrupt connections between cells that are necessary for organs to function.[25] The difficulties of recovering large animals and their individual organs from a frozen state have been long known. Attempts to recover frozen mammals by simply rewarming them were abandoned by 1957.[26] At present, only cells, tissues, and some small organs can be reversibly cryopreserved.[27][28]

When used at high concentrations, cryoprotectants can stop ice formation completely. Cooling and solidification without crystal formation is called vitrification.[29] The first cryoprotectant solutions able to vitrify at very slow cooling rates while still being compatible with whole organ survival were developed in the late 1990s by cryobiologists Gregory Fahy and Brian Wowk for the purpose of banking transplantable organs.[28][30][31] This has allowed animal brains to be vitrified, warmed back up, and examined for ice damage using light and electron microscopy. No ice crystal damage was found;[32] remaining cellular damage was due to dehydration and toxicity of the cryoprotectant solutions. Large vitrified organs tend to develop fractures during cooling,[33] a problem worsened by the large tissue masses and very low temperatures of cryonics.[34]

The use of vitrification rather than freezing for cryonics was anticipated in 1986, when K. Eric Drexler proposed a technique called fixation and vitrification, anticipating reversal by molecular nanotechnology.[35] In 2016, Robert L. McIntyre and Gregory Fahy at the cryobiology research company 21st Century Medicine, Inc. won the Small Animal Brain Preservation Prize of the Brain Preservation Foundation by demonstrating to the satisfaction of neuroscientist judges that a particular implementation of fixation and vitrification called aldehyde-stabilized cryopreservation[36] could preserve a rabbit brain in “near perfect” condition at 135C, with the cell membranes, synapses, and intracellular structures intact in electron micrographs.[37][38][39] Brain Preservation Foundation President, Ken Hayworth, said, “This result directly answers a main skeptical and scientific criticism against cryonicsthat it does not provably preserve the delicate synaptic circuitry of the brain.[40] However the price paid for perfect preservation as seen by microscopy was tying up all protein molecules with chemical crosslinks, completely eliminating biological viability. Actual cryonics organizations use vitrification without a chemical fixation step,[41] sacrificing some structural preservation quality for less damage at the molecular level. Some scientists, like Joao Pedro Magalhaes, have questioned whether using a deadly chemical for fixation eliminates the possibility of biological revival, making chemical fixation unsuitable for cryonics.[42]

While preservation of both structure and function has been possible for brain slices using vitrification,[43] this goal remains elusive for whole brains. In absence of a revived brain, or brain simulation from somehow scanning a preserved brain, the adequacy of present vitrification technology (with or without fixation) for preserving the anatomical and molecular basis of long-term memory as required by cryonics is still unproven.

Outside the cryonics community, many scientists have a blanket skepticism toward existing preservation methods. Cryobiologist Dayong Gao states that “we simply don’t know if (subjects have) been damaged to the point where they’ve ‘died’ during vitrification because the subjects are now inside liquid nitrogen canisters.” Biochemist Ken Storey argues (based on experience with organ transplants), that “even if you only wanted to preserve the brain, it has dozens of different areas, which would need to be cryopreserved using different protocols.”[44]

Those who believe that revival may someday be possible generally look toward advanced bioengineering, molecular nanotechnology,[45] or nanomedicine[17] as key technologies. Revival would require repairing damage from lack of oxygen, cryoprotectant toxicity, thermal stress (fracturing), freezing in tissues that do not successfully vitrify, and reversing the effects that caused death. In many cases extensive tissue regeneration would be necessary.[46]

According to Cryonics Institute president Ben Best, cryonics revival may be similar to a last in, first out process. People cryopreserved in the future, with better technology, may require less advanced technology to be revived because they will have been cryopreserved with better technology that caused less damage to tissue. In this view, preservation methods would get progressively better until eventually they are demonstrably reversible, after which medicine would begin to reach back and revive people cryopreserved by more primitive methods.[47]

Alternatively, some cryonicists propose that a brain could be electronically scanned and uploaded into a digital computer using hypothetical far-future technology. For some, this raises a philosophical issue: would such an upload “actually be you”; would it be “a new person who is like you but whose conscious experience you dont have access to”; or would it merely be a “philosophical zombie”?[2][21]

Historically, a person had little control regarding how their body was treated after death as religion had jurisdiction over the disposal of the body.[48] However, with the rise of secularism, courts began to exercise jurisdiction over the body and use discretion in carrying out of the wishes of the deceased person.[48] Most countries legally treat preserved individuals as deceased persons because of laws that forbid vitrifying someone who is medically alive.[47] Cryonics providers tend to be treated as medical research institutes. In France, cryonics is not considered a legal mode of body disposal;[49] only burial, cremation, and formal donation to science are allowed. However, bodies may legally be shipped to other countries for cryonic freezing.[50] As of 2015, the Canadian province of British Columbia prohibits the sale of arrangements for body preservation based on cryonics.[51] In Russia, cryonics falls outside both the medical industry and the funeral services industry, making it easier in Russia than in the U.S. to get hospitals and morgues to release cryonics candidates.[22] In London in 2016, the English High Court ruled in favor of a mother’s right to seek cryopreservation of her terminally ill 14-year-old daughter contrary to the father’s wishes. The decision was made on the basis that the case represented a conventional dispute over the disposal of the girl’s body, although the judge urged ministers to seek “proper regulation” for the future of cryonic preservation following concerns raised by the hospital about the competence and professionalism of the team that conducted the preservation procedures.[52] In Alcor Life Extension Foundation v. Richardson, the Iowa Court of Appeals ordered for the disinterment of Richardson, who was buried against his wishes for cryopreservation.[48][53]

Writing in Bioethics, David Shaw examines the ethical status of cryonics. The arguments against it include changing the concept of death, the expense of preservation and revival, lack of scientific advancement to permit revival, temptation to use premature euthanasia, and failure due to catastrophe. Arguments in favor of cryonics include the potential benefit to society, the prospect of immortality, and the benefits associated with avoiding death. Shaw explores the relatively minor expense and the potential payoff, and applies it to an adapted version of Pascal’s Wager.[54]

In 1922, Alexander Yaroslavsky, member of Soviet immortalists-biocosmists movement, wrote the poem “Anabiosys”. However, the modern era of cryonics began in 1962 when Michigan college physics teacher Robert Ettinger proposed in a privately published book, The Prospect of Immortality,[55] that freezing people may be a way to reach future medical technology. (The book was republished in 2005 and remains in print.) Even though freezing a person is apparently fatal, Ettinger argued that what appears to be fatal today may be reversible in the future. He applied the same argument to the process of dying itself, saying that the early stages of clinical death may be reversible in the future. Combining these two ideas, he suggested that freezing recently deceased people may be a way to save lives. In 1955 James Lovelock was able to reanimate rats frozen at 0 Celsius using microwave diathermy.[56]

Slightly before Ettingers book was complete, Evan Cooper[57] (writing as Nathan Duhring) privately published a book called Immortality: Physically, Scientifically, Now that independently suggested the same idea. Cooper founded the Life Extension Society (LES) in 1964 to promote freezing people. Ettinger came to be credited as the originator of cryonics, perhaps because his book was republished by Doubleday in 1964 on recommendation of Isaac Asimov and Fred Pohl, and received more publicity. Ettinger also stayed with the movement longer.[citation needed]

The first person to be cryopreserved was James Bedford, in 1967. In the U.S., cryonics took a reputation hit around the 1970s: the Cryonics Society of California, led by a former TV repairman named Robert Nelson with no scientific background, ran out of money to maintain cryopreservation of existing patients; Nelson was sued for allowing nine bodies to decompose.[22]

According to The New York Times cryonicists are predominantly nonreligious white males, outnumbering women by about three to one.[58] According to The Guardian, as of 2008, while most cryonicists used to be young, male and “geeky” recent demographics have shifted slightly towards whole families.[47]

In 2015 Du Hong, a 61-year-old female writer of children’s literature, became the first known Chinese national to be cryopreserved.[59]

Some scientists have expressed skepticism about cryonics in media sources,[22] however the number of peer-reviewed papers on cryonics is limited because its speculative aspects place it outside of the focus of most academic fields.[8] While most neuroscientists agree that all the subtleties of a human mind are contained in its anatomical structure,[60] few neuroscientists will comment directly upon the topic of cryonics due to its speculative nature. Individuals who intend to be frozen are often “looked at as a bunch of kooks”, despite many of them being scientists and doctors.[61]

At the extreme, some people are openly hostile to the idea of cryonics.[2]

According to cryonicist Aschwin de Wolf and others, cryonics can often produce intense hostility from spouses who are not cryonicists. James Hughes, the executive director of the pro-life-extension Institute for Ethics and Emerging Technologies, chooses not to personally sign up for cryonics, calling it a worthy experiment but stating laconically that “I value my relationship with my wife.”[58]

Cryobiologist Dayong Gao states that “People can always have hope that things will change in the future, but there is no scientific foundation supporting cryonics at this time.”[44] Alcor disagrees, stating that “There are no known credible technical arguments that lead one to conclude that cryonics, carried out under good conditions today, would not work.”[20]

Many people assert there would be no point in being revived in the far future, if their friends and families are dead.[54] While it’s universally agreed that “personal identity” is uninterrupted when brain activity temporarily ceases during incidents of accidental drowning (where people have been restored to normal functioning after being completely submerged in cold water for up to 66 minutes), some people express concern that a centuries-long cryopreservation might interrupt their conception of personal identity, such that the revived person would “not be you”.[8]

Suspended animation is a popular theme in science fiction and fantasy settings, appearing in comic books, films, literature, and television. A survey in Germany found that about half of the respondents were familiar with cryonics, and about half of those familiar with cryonics had learned of the subject from films or television.[62] Some commonly known examples of cryonics being used in popular culture include Vanilla Sky, Fallout 4, Futurama, Passengers and Nip/Tuck.[63]

Among the cryopreserved are L. Stephen Coles (in 2014),[64]Hal Finney[65] (in 2014), and Ted Williams.[66]

The urban legend suggesting Walt Disney was cryopreserved is false; he was cremated and interred at Forest Lawn Memorial Park Cemetery.[67]Robert A. Heinlein, who wrote enthusiastically of the concept in The Door into Summer (serialized in 1956), was cremated and had his ashes distributed over the Pacific Ocean. Timothy Leary was a long-time cryonics advocate and signed up with a major cryonics provider, but he changed his mind shortly before his death, and was not cryopreserved.[68]

Read more:

Cryonics – Wikipedia

What is cryonics?

Cryonics is an effort to save lives by using temperatures so cold that a person beyond help by today’s medicine might be preserved for decades or centuries until a future medical technology can restore that person to full health. Cryonics is a second chance at life. It is the reasoned belief in the advancement of future medicinal technologies being able to cure things we cant today.

Many biological specimens, including whole insects, many types of human tissue including brain tissue, and human embryos have been cryogenically preserved, stored at liquid nitrogen temperature where all decay ceases, and revived. This leads scientists to believe that the same can be done with whole human bodies, and that any minimal harm can be reversed with future advancements in medicine.

Neurosurgeons often cool patients bodies so they can operate on aneurysms without damaging or rupturing the nearby blood vessels. Human embryos that are frozen in fertility clinics, defrosted, and implanted in a mothers uterus grow into perfectly normal human beings. This method isnt new or groundbreaking- successful cryopreservation of human embryos was first reported in 1983 by Trounson and Mohr with multicellular embryos that had been slow-cooled using dimethyl sulphoxide (DMSO).

And just in Feb. of 2016, there was a cryonics breakthrough when for the first time, scientists vitrified a rabbits brain and, after warming it back up, showed that it was in near perfect condition. This was the first time a cryopreservation was provably able to protect everything associated with learning and memory.

Go here to read the rest:

What is cryonics?

For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism

Preserving Life Through Cryonics

Cryonics is the practice of deep-freezing recently deceased bodies(or even just the brains of those who have recently died)in the hopes of one day reviving them. It has been the subject of serious scientific exploration and study as well as a fair share of pseudoscience, lore, and myth. Fictional accounts like Batmans Iceman, and the (untrue) rumors of Walt Disney being cryogenically frozen have, unfortunately, cast a speculative shadow over the field of cryonics.

But recently, for the first time ever in China, a woman has been cryogenically frozen. Zhan Wenlian died at the age of 49 from lung cancer and her husband, Gui Junmin, volunteered her for the cryonic procedure. Bothhe and his late wife wanted to donate her body to science to give back to society. He told Mirror UKthat hewas initially pitched the idea of cryonics with it being described as a life preservation project.

This procedure which has Wenlians body restingfacedownin 2,000 liters of liquid nitrogen was completed at theYinfeng Biological Group in Jinan. This project is the collaborative effortof the Yinfeng Biological Group, Qilu Hospital Shandong University and consultants from Alcor Life Extension Foundation, a nonprofit cryonics company based in the United States.

Even with all the faith many have in the procedure, the question remains: how scientifically possible is a project like this? Is this just an experiment to allow us to better understand human biology, orcould cryonics one day become a feasible option?

Cryonics is all about timing.The bodies of the deceased arecryogenically frozenimmediately after the heartstops beating. Freezing is a bit of a misleading term, because cryonic freezing is actually very specifically trying toavoidice crystal formation which damages the cells of the bodys tissues. Rapid cooling, rather than freezing, is a more accuratedescription of the process. A chemical cocktail of preservatives likeglycerol andpropandiol, in addition to antifreeze agents, are commonly used to get the body into a stable state where it wont be decaying, but also wont suffer damage from being stored at low temperatures for, conceivably, a very long time.

From there, the bodiesare given specific care that caters to the idea that death is a continuing process; one that can ultimately be reversed. The aim of cryonic preservation would be to one day be able to thaw the bodies and reanimate them at a cellular level preferably without too many epigenetic changes.

I tend to believe in new and emerging technologies, so I think it will be completely possible to revive her.

With ourcurrent understanding and technology, this process of reversingdeath so completely is just not possible. The closest kind of revival we have are themoments after clinical death where patients are revived by something such as cardiac defibrillation. Cryonics acts within this critical, albeit brief, period as well but works within the belief that death is a grey area. More of a processrather than a definite, final, event.

Just because we havent succeeded in reviving the dead yetdoesnt mean the field of cryonics isunnecessary or unimportant.This first case inChina is a major step forward for everyone researching inthe field of cryonics and those of us who may, one day, hope to benefit from advancements in it.

We may not be able to reverse death just yet,but it doesnt seem outof the realm of possibility to imagine that, with such wild scientific advancements underway, technology could one day allow it to be possible. Whether or not it does in our lifetimes, this most recent development is certainly a positive one.

Read the rest here:

For The First Time Ever, A Woman in China Was Cryogenically Frozen – Futurism